1.1.10(a)

Many possibilities. See:
http://en.wikipedia.org/wiki/Euclidean algorithm  and Ct}’ ( *~l§fxi¥__
http://en.wikipedia.org/wiki/Extended Euclidean algorithm =

1.2.3
A. ( as long as we know how to compute square root of any positive integer)

1.2.9
Fix the loop counters such that each pair is considered only once, and pre-compute the difference between
two elements:

Algorithm: MyMinDist (A[O...n-1])
//Input: Array A[0...n-1] of numbers
//0utput: Smallest distance d between two of its elements
dmin<-inf
for i <- 0 to n-2 do
for j <- i+l to n-1 do
temp <- |A[i] - A[j]]
if temp < dmin
dmin <- temp
return dmin

other solutions might include presorting and then doing a linear scan though the array.

// pre-sort (see ilevitin: nage 126)
Algorithm Mergesort(A{0...1-11)

Algorithm MyMinDist(A[0...n-1])
//Input: Sorted array A[O...n-1] of numbers
//0utput: Smallest distance d between two of its elements
dmin <- inf
for i <- @ to n-2 do

temp <- JA[i] - A[i+1]

if temp < dmin

dmin <- temp

return dmin

1.3.10
extra credit.

.4.9 or 1.4.10

4.9

. @ priority queue

a queue

a stack with reverse Po.ish notation

O T Q =t =2

1.4.10

easy one:

search for each successive letter of the first work in the second one. If the search is successful,
delete the first occurrence of the latter in the second word, and stop otherwise.

better:

sort the letters of each word and then compare them in a single parallel scan.

other:

Create letter vectors for :sach work; scan each work and for each letter occurrence, add one to letter in
appropriate letter vector .representing letter counts). Compare two vectors.

many more exist...

2.1.6

Before applying a sorting algorithm, compare the adjacent elements of its input: if a_i =< a i+l for
every i=0...n-2 stop. Generally, it is not a worthwhile addition because it slows down the algorithm on
all but very special inputs. Note some sorting algorithms (Bubble and insertion) intrinsically
incorporate this test in ine body of the algorithm.




2.1.7

a. T(2n)/T(n) = [c_m 1/3 (2n)~3]/ [c_m 1/3 n~3] = 8 (cm is the time of one multiplication.

b.We can estimate the running time for solving systems of order n on the old computer and that of order N
on the new computer as T_old(n)=c_m 1/3 n"3 and T new(N)=10"-3 ¢ m 1/3 N*3, respectively, where c m is
the time of one multiplication on the old computer. Replacing T old(n) and T new(N) by these estimates in
the equation T_old(n) = T _new(N) yields ¢.m 1/3 n™3 = 10~-3 c.m 1/3 N*3 or N/n = 10.

.2.5
1g(n+100)~10, 1n~2(n), n~(1/3), 0.001n"4 + 3n™3 + 1, 3~n, 2~(2n), (n-2)!

VI N

2.2.9
. Theta(n log{(n)) + 0(n) = Theta(n log(n))
. Theta(n)

N [@ a1}

.3.5(a-d}
a. An element comparison

b. C(n) = Sum_(i=1)"{n-1) (2) = 2(n-1)
Cc. Theta(n)
d. Obvious improvements for some inputs it so replace the two if-statements by the following:

i% A[i]< minval minval <- A[i]
else if A[i]> maxval maxval <- A[i]

Another improvement, both more subtle and substantial, is based on the observat_on that it is more
efficient to update the minimum and maximum values seen so far not for each element but for a pair of two
consecutive elements. If two such elements are compared with each other first, the updates will require
only two more comparisons for the total of three comparisons per pair. note that the same improvement can
be obtained by a divide-and-conquer algorithm.




