
An adjustment must be made for an odd exponent in 
the argument, where K is the original multiplier. 

~ / X  = ~¢/Y × .v/1/K (even exponent) 
= x / Y  X ~ / 2 / K  (odd exponent) 

Since 

Y 
A + ~ ,  

C r -  2 

% / X  = ( A  + ~ - ) ~ / l ~ ( e v e n e x p o n e n t ) ,  

= (A + ~ - ) % / ~ ( o d d e x p o n ' e n t ) .  

Thus the final multiplication is done selectively (and 
indexed). Note that  this correction for odd exponent 
would have to be done in any event, but  here it is auto- 
matically incorporated into multiplication required in 

any case. A possible convenience in actual coding is to 
use ( - A )  throughout and change the sign of the final 
multipliers. Properly coded, this method can give near 
minimum execution times. When applied to the UNIVAC 
1107, a time of 144gsec was achieved. 

General 

If this method is applied to many functions in a library 
package, the reduced range yields a saving in the nmnber 
of coefficients stored for the polynomials, and the table 
of multipliers is amortized over the several routines. 
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A Penny-Matching Program* 

ELIZABETH WALL AND RICHARD M .  BROWN 

University of Illinois,~ Urbana, Illinois 

The logic of a penny-matching program written for the 
CSX-1 is described. 

The penny-matching game 1 is one of the simplest learn- 
ing programs that  can be written for a computer. I t  is 
also an effective demonstration device for student groups 
in that  the play is simple and the adaptive behavior 
readily perceived. Notwithstanding this and the fact 
that  many computer installations have such a program 
hidden in a corner of their libraries, exceedingly little on 
such programs can be found in the literature; ttagel- 
barger's paper on SEER [1], which was a special device, 
is the only detailed description known to the authors. 
The present paper describes the logic of a penny-match- 
ing program written for the CSX-1 computer at the 
University of Illinois Coordinated Science Laboratory. 

Computer Program Logic 

The penny-matching program looks for correlations 
between the opponent 's choices and the pat tern of moves 

* This work was supported by the U. S. Army Signal Corps, 
the Office of Naval Research, and the Air Force Office of Scientific 
Research. 

t Coordinated Science Laboratory.  
t This is a two person game where on each move the players 

each choose one of two al ternat ives (heads or tails);  the win or 
loss is determined by the matching of the choices, one player 
having previously been selected to t ry  to match.  
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of both players for the previous games. To this end it 
generates estimates, p, of the probability that  the oppo- 
nent will play heads given the pattern b from the last 
n games. These estimates, p, are corrected and stored 
following each play. Using these p's, the program selects 
an appropriate move so as to match or mismatch accord- 
ing to its role in the game. 

Since an estimate must be stored for every possible 
pattern of the last n games, obviously memory capacity 
limits the number of previous games which can be con- 
sidered. In this program only the last six games are con- 
sidered; furthermore, for greater flexibility, values of p 
for all n's from 0 up to 6 are generated, so that  a total of 
5461 values have to be stored (the value n = 0 considers 
only the opponent 's previous play, irrespective of the 
program's play). 

Initially, it is assumed by the program that  its oppo- 
nent 's play is random; that  is, all of the program's p's are 
set equal to one-half. After each game, however, the pro- 
gram extracts from the memory the seven p's correspond- 
ing to the patterns of the six games preceding the one 
just played. I t  then modifies the p's according to the ac- 
tual last play using the following rules: 

: m + k(1 -- pi) if opponent played heads, 
m+l p~ -- lcpi if opponent played tails. (1) 

I t  can be shown that  if the opponent plays heads with a 
constant probability, P,  the estimate p will eventually 
stabilize to an average value P. The smoothing constant, 
k, determines the rate of learning of the opponent 's 
bias towards a given pattern. If the bias changes from a 
value P0 to P1,  then the estimate of that  bias will move 
towards the new value P ;  the average number of recur- 
rences, I,  of the pat tern required for the estimate to move 
½ the distance to the new value is given by: 

I = --ln2/ln(1 -- k) (2) 
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Typical values for I are: 

K 2 -1 2 -2 2 -3 2 -4 2 -5 2 -6 

I 1 2 5 11 22 44 

I t  should also be noted that  for nearly random play, 
any given pat tern of six games will occur ~ as frequently 
as a pat tern for one game only. Thus the rate of pat tern 
learning also depends on n, the depth of games considered 
in the pattern;  for equivalent rates of learning at all 
depths, the smoothing constants should vary  according 
to factors of 2 ". 

At the beginning of each play, the program must de- 
termine its own choice of heads or tails. To do this it first 
extracts from memory the seven values of p appropriate 
to the play of the preceding games. The program selects 
that  p which deviates most from the value ½--i.e. that  o 
which most strongly suggests a bias on the part  of the 
opponent. The other p's are discarded? 

To determine its own play the program generates a ran- 
dora number, R (0 N R < 1), and compares it to the 
selected most deviant p. I t  then plays heads for R < p 
(assuming matching is desired), so that  its own play 
follows a random strategy biased in accordance to the 
estimated bias of its opponent. 

In summary of the entire cycle, the program first ex- 
amines its estimates of bias on the part  of its opponent 
towards heads or tails. The most strongly indicative 
estimate then determines the program's own bias in its 
next play. The opponent 's actual play is ingested and used 

2 This  process resembles t h a t  for the  " d e m o n s "  in Selfridge's 
Pandemonium, wherein the  loudest  demon is l is tened to. 

to adjust the bias estimates. After storing these new 
estimates, the program constructs the description of the 
pattern for the new set of previous six games, and the 
process begins over again. 

Results of  Play 

The program has been run against human opponents 
and against other versions of itself. As expected, in play 
against humans, patterns of play were ultimately de- 
tected to the advantage of the program. In machine-machine 
play, two results are of interest. First, unlike human be- 
havior, any bias in the randomness of play of one machine 
(produced with a biased random number generator) will 
be compensated for to a very high degree by the adaptive 
mechanisms of the program. For  example, a machine 
playing with a bias of 5:1 towards tails will lose to an 
unbiased machine only by a ratio of 53:47. 

A second result of interest is the fact the values of the 
learning time constants, k, did not affect the scores. This 
is in contradiction to results reported by Shannon [2] 
for play between an undescribed machine and Hagel- 
barger's SEER,  wherein the faster responding machine 
beat its slower opponent by a ratio of 55:45. In our pro- 
gram the ability to learn was the only apparent  factor, 
not the rate of learning. 
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A Computer Program for 
Analysis of Variance for a 
2-Level Factorial Design 

CATHERINE BRITTON AND I .  F .  WAGNER 

Johns Hopkins University Applied Physics Laboratory 
Silver Spring, Maryland 

Although many computer programs exist for handling 
analysis of variance, most of them employ the conventional 
methods described in statistics books for finding the 
sums of squares. 

Yates [1] presented a simplified method for calculating 
the main effects and interactions for a two-level factorial 
experimental design. This method is readily adapted to 
computer use and involves only simple arithmetic opera- 
tions. I t  has been programmed in FORTRAN and can be 
used to calculate the mean squares for all of the main 
effects and interactions of a two-level factorial design 
with as many as eight factors (variables) and five repli- 
cations. A minor modification to the program could ex- 

tend the number of variables and replications, limited 
only by machine storage capacity. 

To simplify the discussion, the following terms are 
defined: 

N ~ number of factors (variables) being tested 
R ~ number of replications of each t reatment  

combination 
2 ~ ~ total number of t reatment  combinations 

R X 2~ ~ total number of responses 
M~¢ ~ - a  matrix whose maximum number of rows 

(i) equals 2 N and maximum number of 
columns (j) is CR+N+4 • 

The program consists of constructing a 2N X CR+~r+4 
matrix from the R X 2N responses using only simple 
arithmetic operations. The first column of the matrix 
(M) represents the responses from the first replication of 
the 2N treatment  combinations and must be arranged in 
standard order. The generally accepted statistical defini- 
tion of standard order is used, see column 1 of Table I. 
Column two of the matrix (M) represents the responses 
from the second replication. The successive columns 
similarly represent responses for the additional replica- 
tions and provide a total of CR columns, R N 5. 

The remainder of the columns in the matrix (M) is 
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