
An adjustment must be made for an odd exponent in
the argument, where K is the original multiplier.

~ / X = ~¢/Y × .v/1/K (even exponent)
= x / Y X ~ / 2 / K (odd exponent)

Since

Y
A + ~ ,

C r - 2

% / X = (A + ~ -) ~ / l ~ (e v e n e x p o n e n t) ,

= (A + ~ -) % / ~ (o d d e x p o n ' e n t) .

Thus the final multiplication is done selectively (and
indexed). Note that this correction for odd exponent
would have to be done in any event, but here it is auto-
matically incorporated into multiplication required in

any case. A possible convenience in actual coding is to
use (- A) throughout and change the sign of the final
multipliers. Properly coded, this method can give near
minimum execution times. When applied to the UNIVAC
1107, a time of 144gsec was achieved.

General

If this method is applied to many functions in a library
package, the reduced range yields a saving in the nmnber
of coefficients stored for the polynomials, and the table
of multipliers is amortized over the several routines.

R E F E R E N C E S

1. BEMER, R. W. A machine method for square root computat ion.
Comm. A C M I (Jan. 58), 6-7.

2. - - . A subroutine method for calculating logarithms. Comm.
A C M 1 (May 58), 5-7.

3. - - . Edi tor ' s note on series approximation t runcat ion. Comm.
A C M I (Sept. 58), 3-6.

A Penny-Matching Program*

ELIZABETH WALL AND RICHARD M . BROWN

University of Illinois,~ Urbana, Illinois

The logic of a penny-matching program written for the
CSX-1 is described.

The penny-matching game 1 is one of the simplest learn-
ing programs that can be written for a computer. I t is
also an effective demonstration device for student groups
in that the play is simple and the adaptive behavior
readily perceived. Notwithstanding this and the fact
that many computer installations have such a program
hidden in a corner of their libraries, exceedingly little on
such programs can be found in the literature; ttagel-
barger's paper on SEER [1], which was a special device,
is the only detailed description known to the authors.
The present paper describes the logic of a penny-match-
ing program written for the CSX-1 computer at the
University of Illinois Coordinated Science Laboratory.

Computer Program Logic

The penny-matching program looks for correlations
between the opponent 's choices and the pat tern of moves

* This work was supported by the U. S. Army Signal Corps,
the Office of Naval Research, and the Air Force Office of Scientific
Research.

t Coordinated Science Laboratory.
t This is a two person game where on each move the players

each choose one of two al ternat ives (heads or tails); the win or
loss is determined by the matching of the choices, one player
having previously been selected to t ry to match.

Vo lume 6 / N u m b e r 6 / J u n e , 1963

of both players for the previous games. To this end it
generates estimates, p, of the probability that the oppo-
nent will play heads given the pattern b from the last
n games. These estimates, p, are corrected and stored
following each play. Using these p's, the program selects
an appropriate move so as to match or mismatch accord-
ing to its role in the game.

Since an estimate must be stored for every possible
pattern of the last n games, obviously memory capacity
limits the number of previous games which can be con-
sidered. In this program only the last six games are con-
sidered; furthermore, for greater flexibility, values of p
for all n's from 0 up to 6 are generated, so that a total of
5461 values have to be stored (the value n = 0 considers
only the opponent 's previous play, irrespective of the
program's play).

Initially, it is assumed by the program that its oppo-
nent 's play is random; that is, all of the program's p's are
set equal to one-half. After each game, however, the pro-
gram extracts from the memory the seven p's correspond-
ing to the patterns of the six games preceding the one
just played. I t then modifies the p's according to the ac-
tual last play using the following rules:

: m + k(1 -- pi) if opponent played heads,
m+l p~ -- lcpi if opponent played tails. (1)

I t can be shown that if the opponent plays heads with a
constant probability, P, the estimate p will eventually
stabilize to an average value P. The smoothing constant,
k, determines the rate of learning of the opponent 's
bias towards a given pattern. If the bias changes from a
value P0 to P1, then the estimate of that bias will move
towards the new value P ; the average number of recur-
rences, I, of the pat tern required for the estimate to move
½ the distance to the new value is given by:

I = --ln2/ln(1 -- k) (2)

C o m m u n i c a t i o n s o f t h e ACM 307

Typical values for I are:

K 2 -1 2 -2 2 -3 2 -4 2 -5 2 -6

I 1 2 5 11 22 44

I t should also be noted that for nearly random play,
any given pat tern of six games will occur ~ as frequently
as a pat tern for one game only. Thus the rate of pat tern
learning also depends on n, the depth of games considered
in the pattern; for equivalent rates of learning at all
depths, the smoothing constants should vary according
to factors of 2 ".

At the beginning of each play, the program must de-
termine its own choice of heads or tails. To do this it first
extracts from memory the seven values of p appropriate
to the play of the preceding games. The program selects
that p which deviates most from the value ½--i.e. that o
which most strongly suggests a bias on the part of the
opponent. The other p's are discarded?

To determine its own play the program generates a ran-
dora number, R (0 N R < 1), and compares it to the
selected most deviant p. I t then plays heads for R < p
(assuming matching is desired), so that its own play
follows a random strategy biased in accordance to the
estimated bias of its opponent.

In summary of the entire cycle, the program first ex-
amines its estimates of bias on the part of its opponent
towards heads or tails. The most strongly indicative
estimate then determines the program's own bias in its
next play. The opponent 's actual play is ingested and used

2 This process resembles t h a t for the " d e m o n s " in Selfridge's
Pandemonium, wherein the loudest demon is l is tened to.

to adjust the bias estimates. After storing these new
estimates, the program constructs the description of the
pattern for the new set of previous six games, and the
process begins over again.

Results of Play

The program has been run against human opponents
and against other versions of itself. As expected, in play
against humans, patterns of play were ultimately de-
tected to the advantage of the program. In machine-machine
play, two results are of interest. First, unlike human be-
havior, any bias in the randomness of play of one machine
(produced with a biased random number generator) will
be compensated for to a very high degree by the adaptive
mechanisms of the program. For example, a machine
playing with a bias of 5:1 towards tails will lose to an
unbiased machine only by a ratio of 53:47.

A second result of interest is the fact the values of the
learning time constants, k, did not affect the scores. This
is in contradiction to results reported by Shannon [2]
for play between an undescribed machine and Hagel-
barger's SEER, wherein the faster responding machine
beat its slower opponent by a ratio of 55:45. In our pro-
gram the ability to learn was the only apparent factor,
not the rate of learning.

R E F E R E N C E S

1. HAGELBAaGER, D. W. SEER, a SEquence Ex t r apo la t ing
Robot . Trans. [RE EC5 (Mar. 1956), 1-6.

2. SrIANNON C. E. Game playing machines . J. Franklin Inst. 260,
(Dec. 1955), 447-453.

A Computer Program for
Analysis of Variance for a
2-Level Factorial Design

CATHERINE BRITTON AND I . F . WAGNER

Johns Hopkins University Applied Physics Laboratory
Silver Spring, Maryland

Although many computer programs exist for handling
analysis of variance, most of them employ the conventional
methods described in statistics books for finding the
sums of squares.

Yates [1] presented a simplified method for calculating
the main effects and interactions for a two-level factorial
experimental design. This method is readily adapted to
computer use and involves only simple arithmetic opera-
tions. I t has been programmed in FORTRAN and can be
used to calculate the mean squares for all of the main
effects and interactions of a two-level factorial design
with as many as eight factors (variables) and five repli-
cations. A minor modification to the program could ex-

tend the number of variables and replications, limited
only by machine storage capacity.

To simplify the discussion, the following terms are
defined:

N ~ number of factors (variables) being tested
R ~ number of replications of each t reatment

combination
2 ~ ~ total number of t reatment combinations

R X 2~ ~ total number of responses
M~¢ ~ - a matrix whose maximum number of rows

(i) equals 2 N and maximum number of
columns (j) is CR+N+4 •

The program consists of constructing a 2N X CR+~r+4
matrix from the R X 2N responses using only simple
arithmetic operations. The first column of the matrix
(M) represents the responses from the first replication of
the 2N treatment combinations and must be arranged in
standard order. The generally accepted statistical defini-
tion of standard order is used, see column 1 of Table I.
Column two of the matrix (M) represents the responses
from the second replication. The successive columns
similarly represent responses for the additional replica-
tions and provide a total of CR columns, R N 5.

The remainder of the columns in the matrix (M) is

308 C o m m u n i c a t i o n s o f t h e A.CM V o l u m e 6 / N u m b e r 6 / J u n e , 1963

