
CS 161: Introduction to
Programming and

Problem-solving

Warren Harrison

Lists & Tuples

Part A

2

Scalar Variables

• Up to now, we’ve mainly focused on individual

items through the use of scalar variables:

– testScore = 87

• A scalar variable can hold only one value at a

time

• When a new value is added, the old one is

replaced

Calculating the Average Test Score
with Scalars

totalScore = 0

students = int(input("Student Count "))

for count in (range(students)):

 score = int(input("Enter Score "))

 totalScore = totalScore + score

avgScore = totalScore / students

print("The average score is ",avgScore)

3

Collections

• We often want to represent collections of items:

– cs161Scores = [87,93,66,82,77,100,89]

• When dealing with scalar variables, we get a

value, process it, then get another value, and

so on.

• When dealing with collections, we get all the

values first, and then process them

4

Lists

• Lists are used in Python to hold collections of

values

• a List is represented with square brackets: []

• Initialize a named list:

studentList = ["Bob","Tom","Ann","Sally"]

studentList = []

5

Display the Contents of a List

studentList = ["Bob","Tom","Ann","Sally"]

print(studentList)

>>>

['Bob', 'Tom', 'Ann', 'Sally']

>>>

6

Display the Contents of a List
Using a For Loop

studentList = ["Bob","Tom","Ann","Sally"]

for studentName in studentList:

 print(studentName)

Compare to:

studentList = ["Bob","Tom","Ann","Sally"]

print(studentList)

7

Reviewing the For Loop

for loop variable in sequence:

 <loop body>

• The for loop iterates over a sequence of

items, assigning each subsequent item in the

sequence to the loop variable

• We can use range(n) to force to loop to

repeat a certain number of times

8

Accessing Specific List Items

studentList = ["Bob","Tom","Ann","Sally"]

print(studentList[0])

>>>

Bob

>>>

This is called indexing

9

Concatenating Lists

Join two (or more) lists to create one using "+"

studentList1 = ["Ann","Sally","Lisa"]

studentList2 = ["Bob","Tom","Mark"]

studentList3 = studentList1 + studentList2

print("Student List1: ",studentList1)

print("Student List2: ",studentList2)

print("Student List3: ",studentList3)

10

Filling a List From the Keyboard

• Create a list using input:

[input("Student ")]

• And concatenate it to the receiving list:

stuList = []

stuList = stuList + [input("Student ")]

11

Calculating the Average Test Score
with a List

totScore = 0

scrList = []

students = int(input("Student Count "))

for count in (range(students)):

 scrList = scrList + [int(input("Score "))]

for count in (range(students)):

 totScore = totScore + scrList[count]

avgScore = totScore / students

print("The average score is ",avgScore)

12

Why?

• Why do we want to deal with collections of

items (lists) rather than individual items

(scalars)?

• Sometimes it is nice to separate the input

from the processing

13

Let's Revisit MPG
which report do you like best?

>>>

city? Portland

Odometer Reading? 10120

How many gallons? 10

Portland MPG: 12.0

city? Oregon City

Odometer Reading? 10220

How many gallons? 10

Oregon City MPG: 10.0

city? Gladstone

Odometer Reading? 10390

How many gallons? 13

Gladstone MPG: 13.0769230769

city? ALL DONE

Total MPG 30.0

>>>

>>>

city? Portland

Odometer Reading? 10120

How many gallons? 10

city? Oregon City

Odometer Reading? 10220

How many gallons? 10

city? Gladstone

Odometer Reading? 10390

How many gallons? 13

city? ALL DONE

Portland MPG 12.0

Oregon City MPG 10.0

Gladstone MPG 13.0769230769

Total MPG 30.0

>>>

14

MPG w/in-line processing

odometer = startOdometer = 10000

totalGallons = 0

city = input("city? ")

while(city != "ALL DONE"):

 newOdometer = int(input("Odometer Reading? "))

 gallons = float(input("How many gallons? "))

 mpg = (newOdometer - odometer)/gallons

 print(city," MPG: ",mpg)

 odometer = newOdometer

 totalGallons = gallons

 city = input("city? ")

mpg = (odometer - startOdometer)/totalGallons

print("Total MPG ",mpg)

15

MPG using a list

odometer = startOdometer = 10000

totalGallons = cityCount = 0

cityList=odoList=galList=[]

city = input("city? ")

while(city != "ALL DONE"):

 cityList= cityList + [city]

 odoList = odoList + [int(input("Odometer Reading? "))]

 galList = galList + [float(input("How many gallons? "))]

 city = input("city? ")

for currentCity in cityList:

 newOdometer = odoList[cityCount]

 gallons = galList[cityCount]

 mpg = (newOdometer - odometer)/gallons

 print(currentCity,mpg)

 odometer = newOdometer

 totalGallons = gallons

 cityCount = cityCount + 1

mpg = (odometer - startOdometer)/totalGallons

print("Total MPG ",mpg)
16

Why?

• Why do we want to deal with collections of

items (lists) rather than individual items

(scalars)?

• Sometimes it is nice to separate the input

from the processing

• Sometimes you need all the input items in

one place to do the processing you need to

do

17

Central Tendency

• a measure of a "central" or "representative"

value of a collection of data

– Arithmetic mean (or simply, mean) – the sum of

all measurements divided by the number of

observations in the data set – we usually call it

the average

– Median – the middle value that separates the

higher half from the lower half of the data set

– Mode – the most frequent value in the data set

18

Computing the Median

• List all the values in order from smallest to

largest – this called sorting

• Use the sort method – sorts the list in place

– scrList.sort()

19

Sorting a List

scrList=[67,34,88,86,92,76,84,79,71,90]

print(scrList)

scrList.sort()

print(scrList)

>>>

[67, 34, 88, 86, 92, 76, 84, 79, 71, 90]

[34, 67, 71, 76, 79, 84, 86, 88, 90, 92]

>>>

20

Computing the Median

• List all the values in order from smallest to

largest – this called sorting

• Use the sort method – sorts the list in place

– scrList.sort()

• Find the middle element so that an equal

number of items in the list are greater than

and less than the midpoint

– The size of the list could be odd or even – two

different cases …
21

Two Lists

• 43

• 52

• 66

• 69

• 78

• 82

• 43

• 52

• 66

• 69

• 78

• 82

• 97

22

Odd & Even Lists and the Median

• For odd lists, the median is the middle

element

• For even lists, the median is the average of

the two middle elements

• How do you tell if the list length is odd or

even?

23

Is the List Odd or Even?

• First, find out how long the list is

• The len() function

listSize = len(theList)

• If you can divide a number in two, with no

remainder, it's even – use the modulo

operator, % (computes the remainder of a

division)

remainder = listSize % 2

if remainder == 0:
24

What is the index of the Midpoint?

• 43

• 52

• 66

• 69

• 78

• 82

• 43

• 52

• 66

• 69

• 78

• 82

• 97 25

Midpoint = listSize // 2 – note integer division

… remember – indexes start at 0!

Computing the Median

scrList=[67,34,88,86,92,76,84,79,71,90,91]

scrList.sort()

print(scrList)

listSize = len(scrList)

remainder = listSize % 2

if remainder == 0:

 midpoint = listSize // 2

 median = (scrList[midpoint]+scrList[midpoint-1])/2

else:

 midpoint = listSize // 2

 median = scrList[midpoint]

print(median)

26

What are the Top Five Scores?

scrList=[67,34,88,86,92,76,84,79,71,90,91]

scrList.sort()

print(scrList)

print(scrList[-5:])

>>>

[34, 67, 71, 76, 79, 84, 86, 88, 90, 91, 92]

[86, 88, 90, 91, 92]

>>>

27

Reviewing Slices

• A "slice" allows us to partition off a sequential

subset of the list items

• list[start:end]

• Returns the elements between the two indexes

• 0 denotes the first element

• The number of items in the list denotes the last

element

• Can use negative indexes to count backwards

28

