
Specification of the "sequ" command
Copyright © 2013 Bart Massey
Revision 0, 1 October 2013

This specification describes the "universal sequence" command sequ. The sequ command is a
backward-compatible set of extensions to the UNIX [seq]
(http://www.gnu.org/software/coreutils/manual/html_node/seq-invo
cation.html) command. There are many implementations of seq out there: this
specification is built on the seq supplied with GNU Coreutils version 8.21.

The seq command emits a monotonically increasing sequence of numbers. It is most commonly
used in shell scripting:

 TOTAL=0
 for i in `seq 1 10`
 do
 TOTAL=`expr $i + $TOTAL`
 done
 echo $TOTAL

prints 55 on standard output. The full sequ command does this basic counting operation, plus
much more.

This specification of sequ is in several stages, known as compliance levels. Each compliance
level adds required functionality to the sequ specification. Level 1 compliance is equivalent to
the Coreutils seq command.

The usual specification language applies to this document: MAY, SHOULD, MUST (and their
negations) are used in the standard fashion.

Wherever the specification indicates an error, a conforming sequ implementation MUST
immediately issue appropriate error message specific to the problem. The implementation then
MUST exit, with a status indicating failure to the invoking process or system. On UNIX systems,
the error MUST be indicated by exiting with status code 1.

When a conforming sequ implementation successfully completes its output, it MUST
immediately exit, with a status indicating success to the invoking process or systems. On UNIX
systems, success MUST be indicated by exiting with status code 0.

Compliance Level 0

Compliance Level 0 of sequ requires absolute minimum functionality. A CL0 sequ MUST
accept exactly two command-line arguments. Each argument SHOULD be a representation of an

1

2
3

4
5
6
7
8

9
10

11
12
13
14
15
16

17
18

19
20
21

22
23

24
25
26
27

28
29
30

31

32
33

integer value. Any other supplied argument syntax is an error.

If the first integer argument is numerically greater than the second, the sequ command MUST
emit no output. Otherwise, sequ MUST print on its output each of the integers between the first
and second argument, inclusive. Each output integer MUST be on a line by itself, that is, a line
terminated with an appropriate line terminator for the host environment.

Compliance Level 1

Compliance Level 1 of sequ adds the full functionality of GNU Coreutils seq. This includes
the "--format", "--separator", "--equal-width", "--help" and "--version" arguments (as well as the
one-character abbreviations of these), the increment argument, and support for floating-point
numbers. The sequ initialization and increment arguments are now optional, as per the seq
spec.

The sequ "--format" specifier MAY format floating-point numbers differently than seq, but it
MUST follow some well-described and reasonable floating-point formatting standard.

Backslash-escapes in the "-s" argument string MUST be processed as in C printf(3).

Compliance Level 2

Compliance Level 2 of sequ adds additional convenience arguments for formatting.

The arguments that MUST be accepted are as follows:

• -W, --words: Output the sequence as a single space-separated line. Equivalent to "-s ' '".

• -p, --pad : Output the sequence with elements padded on the left to be all of equal width:
the pad character is given by the single-char pad string . Backslash-escapes in MUST be
processed as in C printf(3).

Note that the "-w" command of level 2 is equivalent to "-p '0'".

• -P, --pad-spaces: Output the sequence with elements padded with spaces on the left to be
all of equal width. Equivalent to "-p ' '".

Compliance Level 3

Compliance Level 3 of sequ adds the ability to have sequences of types other than
floating-point numbers.

34

35
36
37
38

39

40
41
42
43
44

45
46

47

48

49

50

51

52
53
54

55

56
57

58

59
60

Specifically, CL3 sequ MUST accept as arguments and output as results: arbitrary-precision
integers, single lowercase alphabetic (ASCII) letters, single uppercase alphabetic (ASCII) letters,
and lowercase or uppercase unsigned Roman Numerals.

The sequ command MUST accept a new flag, "--format-word" or "-F", that takes a one-word
argument indicating the type of the sequence. The sequ command MUST accept the
format-word arguments "arabic" (for integers), "floating", "alpha" (for letters), "ALPHA",
"roman" or "ROMAN"; the all-uppercase variants indicate uppercase sequences.

The sequ command MUST accept limit arguments (start, end, and increment) in the format
consistent with the format-word. Arabic limit arguments MAY be "promoted" to Roman
Numerals when Roman output is requested. The increment argument for alpha formats MUST be
arabic. Otherwise, the limit arguments MUST be in the same format as the format-word. When
no format-word is given, the format MUST be inferred from the format of the mandatory end
argument.

Compliance Level 4

Compliance Level 4 of sequ adds the ability to number the lines of a textfile presented on the
input.

CL4 sequ MUST accept the "--number-lines" / "-n" argument. This argument indicates that,
rather than outputting the sequence on standard output, sequ will act as a filter, numbering lines
of a file read from standard input to standard output. Each line "number" will be in the format
specified by the "--format-word" argument, or inferred from the start or increment limit
argument if the "--format-word" argument is not supplied. The end argument is irrelevant when
"--number-lines" is supplied; it MUST NOT be accepted. The separator between the line number
and the line may be given by the "--separator" argument, defaulting to space.

Compliance Level 5

Compliance Level 5 of sequ adds the ability to infer a sequence from a given prefix.

As an alternative to the limit arguments of previous Compliance Levels, CL5 sequ may accept a
sequence specifier of the form:

value [value] [value] ... ".." value

When the ".." argument is present, the non-flag arguments MUST be parsed in inference mode.

In inference mode, sequ picks a best match for the pattern (partial sequence of values leading
up to the ".."), and then continues the sequence until the end value (after the "..") is succeeded.

61
62
63

64
65
66
67

68
69
70
71
72
73

74

75
76

77
78
79
80
81
82
83

84

85

86
87

88

89

90
91

