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Motivation: Terrains by interpolation

To build a model of the terrain
surface, we can start with a number
of sample points where we know the
height.
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Motivation: Terrains

How do we interpolate the height at
other points?

Nearest neighbor interpolation

Piecewise linear interpolation by
a triangulation

Moving windows interpolation

Natural neighbor interpolation
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Triangulation

Let P = {p1, . . . ,pn} be a point set.
A triangulation of P is a maximal
planar subdivision with vertex set P.

Complexity:

2n−2− k triangles

3n−3− k edges

where k is the number of points in P
on the convex hull of P
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But which triangulation?
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Chapter 9
DELAUNAY TRIANGULATIONS

doesn’t look very natural. Therefore our approach for approximating a terrain
is as follows. We first determine a triangulation of P: a planar subdivision
whose bounded faces are triangles and whose vertices are the points of P. (We
assume that the sample points are such that we can make the triangles cover
the domain of the terrain.) We then lift each sample point to its correct height,
thereby mapping every triangle in the triangulation to a triangle in 3-space.
Figure 9.2 illustrates this. What we get is a polyhedral terrain, the graph of a
continuous function that is piecewise linear. We can use the polyhedral terrain
as an approximation of the original terrain.

Figure 9.2
Obtaining a polyhedral terrain from a

set of sample points

The question remains: how do we triangulate the set of sample points? In
general, this can be done in many different ways. But which triangulation is the
most appropriate one for our purpose, namely to approximate a terrain? There
is no definitive answer to this question. We do not know the original terrain, we
only know its height at the sample points. Since we have no other information,
and the height at the sample points is the correct height for any triangulation, all
triangulations of P seem equally good. Nevertheless, some triangulations look
more natural than others. For example, have a look at Figure 9.3, which shows
two triangulations of the same point set. From the heights of the sample points
we get the impression that the sample points were taken from a mountain ridge.
Triangulation (a) reflects this intuition. Triangulation (b), however, where one
single edge has been “flipped,” has introduced a narrow valley cutting through
the mountain ridge. Intuitively, this looks wrong. Can we turn this intuition into
a criterion that tells us that triangulation (a) is better than triangulation (b)?

Figure 9.3
Flipping one edge can make a big

difference (a) (b)
height = 985 height = 23
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The problem with triangulation (b) is that the height of the point q is deter-192
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For interpolation, it is good if triangles are not long and
skinny. We want to use triangles with large angles in our
triangulation.
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Angle Vector of a Triangulation

Let T be a triangulation of P with m triangles. Its angle
vector is A(T) = (α1, . . . ,α3m) where α1, . . . ,α3m are the
angles of T sorted by increasing value.

Let T′ be another triangulation of
P. We define A(T)> A(T′) if A(T)
is lexicographically larger than
A(T′)

T is angle optimal if A(T)≥ A(T′)
for all triangulations T′ of P

α1

α2 α3

α4

α5

α6
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Edge Flipping

edge flip

pi α4
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pj

pk

pl
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Change in angle vector:
α1, . . . ,α6 are replaced by α ′1, . . . ,α

′
6

The edge e = pipj is illegal if min1≤i≤6 αi < min1≤i≤6 α ′i
Flipping an illegal edge increases the angle vector
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Characterisation of Illegal Edges

How do we determine if an edge is illegal?

Lemma: The edge pipj is illegal if
and only if pl lies in the interior of
the circle C. pi

pj

pk

pl

illegal
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Inscribed Angle Theorem

Theorem: Let C be a circle, ` a line
intersecting C in points a and b, and
p,q,r,s points lying on the same side
of `. Suppose that p,q lie on C, r lies
inside C, and s lies outside C. Then

]arb > ]apb = ]aqb > ]asb,

where ]abc denotes the (smaller)
angle defined by the points a,b,c.

` C

p

q

r

s

a

b
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Legal Triangulations

A legal triangulation is a triangulation that does not contain
any illegal edge.

Algorithm LegalTriangulation(T)
Input. A triangulation T of a point set P.
Output. A legal triangulation of P.
1. while T contains an illegal edge pipj

2. do (∗ Flip pipj ∗)
3. Let pipjpk and pipjpl be the two triangles adjacent

to pipj.
4. Remove pipj from T, and add pkpl instead.
5. return T

Question: Why does this algorithm terminate?
“Too slow to be interesting”
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Properties
Computing Delaunay Triangulations

Voronoi Diagram and Delaunay Graph

Let P be a set of n points in the
plane

The Voronoi diagram Vor(P) is
the subdivision of the plane into
Voronoi cells V(p) for all p ∈ P

Let G be the dual graph of
Vor(P)

The Delaunay graph DG(P) is
the straight line embedding of G
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Voronoi Diagram and Delaunay Graph

Let P be a set of n points in the
plane

The Voronoi diagram Vor(P) is
the subdivision of the plane into
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Voronoi Diagram and Delaunay Graph

Let P be a set of n points in the
plane

The Voronoi diagram Vor(P) is
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Planarity of the Delaunay Graph

Theorem: The Delaunay graph of a planar point set is a plane
graph.

Cij

pi

pj

contained in V(pi)

contained in V(pj)
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Delaunay Triangulation

If the point set P is in general position then the Delaunay graph
is a triangulation.

vf
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Empty Circle Property

Theorem: Let P be a set of points in the plane, and let T be
a triangulation of P. Then T is a Delaunay triangulation of P
if and only if the circumcircle of any triangle of T does not
contain a point of P in its interior.
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Delaunay Triangulations and Legal Triangulations

Theorem: Let P be a set of points in the plane. A triangulation
T of P is legal if and only if T is a Delaunay triangulation.

pi

pj
pk

pl

C(pipjpk)

pm C(pipjpm)

e
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Angle Optimality and Delaunay Triangulations

Theorem: Let P be a set of points in the plane.
Any angle-optimal triangulation of P is a Delaunay
triangulation of P. Furthermore, any Delaunay triangulation of
P maximizes the minimum angle over all triangulations of P.
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Computing Delaunay Triangulations

There are several ways to compute the Delaunay triangulation:

By iterative flipping from any triangulation

By plane sweep

By randomized incremental construction

By conversion from the Voronoi diagram

The last three run in O(n logn) time [expected] for n points in
the plane

Andrew P. Black Delaunay Triangulations
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Randomized Incremental Alg. for Delaunay Triangulation

start with a large bounding triangle

add points in random order, maintaining the Delaunay
triangulaiton

remove bounding points
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Construct Bounding Triangle

Bounding triangle avoids
inconvenient edge cases.

Add leftmost point p−2 and
rightmost point p−1; form a
triangle with top point p0

Section 9.3
COMPUTING THE DELAUNAY

TRIANGULATION

that coincides with the Delaunay graph. When P is not in general position,
then any triangulation of the Delaunay graph is legal. Not all these Delaunay
triangulations need to be angle-optimal. However, their angle-vectors do not
differ too much. Moreover, using Thales’s Theorem one can show that the
minimum angle in any triangulation of a set of co-circular points is the same,
that is, the minimum angle is independent of the triangulation. This implies that
any triangulation turning the Delaunay graph into a Delaunay triangulation has
the same minimum angle. The following theorem summarizes this.

Theorem 9.9 Let P be a set of points in the plane. Any angle-optimal trian-
gulation of P is a Delaunay triangulation of P. Furthermore, any Delaunay
triangulation of P maximizes the minimum angle over all triangulations of P.

9.3 Computing the Delaunay Triangulation

We have seen that for our purpose—approximating a terrain by constructing a
polyhedral terrain from a set P of sample points—a Delaunay triangulation of P
is a suitable triangulation. This is because the Delaunay triangulation maximizes
the minimum angle. So how do we compute such a Delaunay triangulation?

We already know from Chapter 7 how to compute the Voronoi diagram
of P. From Vor(P) we can easily obtain the Delaunay graph DG(P), and by
triangulating the faces with more than three vertices we can obtain a Delaunay
triangulation. In this section we describe a different approach: we will compute
a Delaunay triangulation directly, using the randomized incremental approach
we have so successfully applied to the linear programming problem in Chapter 4
and to the point location problem in Chapter 6.

In Chapter 6 we found it convenient to start with a large rectangle containing

p−1

p0

p−2
the scene, to avoid problems caused by unbounded trapezoids. In the same
spirit we now start with a large triangle that contains the set P. We will add
two extra points p−1 and p−2 that, together with the highest point p0 of P,
form a triangle containing all the points. This means we are now computing a
Delaunay triangulation of P∪{p−1, p−2} instead of the Delaunay triangulation
of P. Later we want to obtain the Delaunay triangulation of P by discarding p−1
and p−2, together with all incident edges. For this to work we have to choose
p−1 and p−2 far enough away, so that they don’t destroy any triangles in the
Delaunay triangulation of P. In particular, we must ensure they do not lie in
any circle defined by three points in P. We postpone the details of this to a later
stage; first we have a look at the algorithm.

The algorithm is randomized incremental, so it adds the points in random
order and it maintains a Delaunay triangulation of the current point set. Consider
the addition of a point pr. We first find the triangle of the current triangulation
that contains pr—how this is done will be explained later—and we add edges
from pr to the vertices of this triangle. If pr happens to fall on an edge e of
the triangulation, we have to add edges from pr to the opposite vertices in
the triangles sharing e. Figure 9.7 illustrates these two cases. We now have 199
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Add Points in Random Order

Add a point pr:

1 find triangle pipjpk containing pr

2 add new edges from pi to pr, pj

to pr, pk to pr

3 fix-up the new triangles if they
are too skinny

Chapter 9
DELAUNAY TRIANGULATIONS

a triangulation again, but not necessarily a Delaunay triangulation. This is
because the addition of pr can make some of the existing edges illegal. To

Figure 9.7
The two cases when adding a point pr

pr

pi

pk

p j

pr

p j

pi

pkpl

pr lies in the interior of a triangle pr falls on an edge

remedy this, we call a procedure LEGALIZEEDGE with each potentially illegal
edge. This procedure replaces illegal edges by legal ones through edge flips.
Before we come to the details of this, we give a precise description of the main
algorithm. It will be convenient for the analysis to let P be a set of n+1 points.

Algorithm DELAUNAYTRIANGULATION(P)
Input. A set P of n+1 points in the plane.
Output. A Delaunay triangulation of P.
1. Let p0 be the lexicographically highest point of P, that is, the rightmost

among the points with largest y-coordinate.
2. Let p−1 and p−2 be two points in R2 sufficiently far away and such that P

is contained in the triangle p0 p−1 p−2.
3. Initialize T as the triangulation consisting of the single triangle p0 p−1 p−2.
4. Compute a random permutation p1, p2, . . . , pn of P\{p0}.
5. for r ← 1 to n
6. do (∗ Insert pr into T: ∗)
7. Find a triangle pi p j pk ∈ T containing pr.
8. if pr lies in the interior of the triangle pi p j pk
9. then Add edges from pr to the three vertices of pi p j pk, thereby

splitting pi p j pk into three triangles.
10. LEGALIZEEDGE(pr, pi p j,T)
11. LEGALIZEEDGE(pr, p j pk,T)
12. LEGALIZEEDGE(pr, pk pi,T)
13. else (∗ pr lies on an edge of pi p j pk, say the edge pi p j ∗)
14. Add edges from pr to pk and to the third vertex pl of the

other triangle that is incident to pi p j, thereby splitting the
two triangles incident to pi p j into four triangles.

15. LEGALIZEEDGE(pr, pi pl ,T)
16. LEGALIZEEDGE(pr, pl p j,T)
17. LEGALIZEEDGE(pr, p j pk,T)
18. LEGALIZEEDGE(pr, pk pi,T)
19. Discard p−1 and p−2 with all their incident edges from T.
20. return T200
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Add Points in Random Order

Add a point pr:

1 pr falls on an existing edge
e = pipjpk

2 add new edges from pr to
opposite vertices in both
triangles sharing e

3 fix-up the new triangles if they
are too skinny

Chapter 9
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a triangulation again, but not necessarily a Delaunay triangulation. This is
because the addition of pr can make some of the existing edges illegal. To
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Fix-up the new triangles

Find illegal edges and flip them:

Which edges can become illegal
due to insertion of pr?

Only those edges adjacent to
new triangles

LegalizeEdge(pr, pipj, T)
recursively makes all edges
affected by pr in T legal.

Section 9.3
COMPUTING THE DELAUNAY

TRIANGULATION

Next we discuss the details of turning the triangulation we get after line 9 (or
line 14) into a Delaunay triangulation. We know from Theorem 9.8 that a
triangulation is a Delaunay triangulation if all its edges are legal. In the spirit
of algorithm LEGALTRIANGULATION, we therefore flip illegal edges until the
triangulation is legal again. The question that remains is which edges may
become illegal due to the insertion of pr. Observe that an edge pi p j that was
legal before can only become illegal if one of the triangles incident to it has
changed. So only the edges of the new triangles need to be checked. This
is done using the subroutine LEGALIZEEDGE, which tests and possibly flips
an edge. If LEGALIZEEDGE flips an edge, other edges may become illegal.
Therefore LEGALIZEEDGE calls itself recursively with such potentially illegal
edges.

pr pi

p j pk
LEGALIZEEDGE(pr, pi p j,T)
1. (∗ The point being inserted is pr, and pi p j is the edge of T that may need

to be flipped. ∗)
2. if pi p j is illegal
3. then Let pi p j pk be the triangle adjacent to pr pi p j along pi p j.
4. (∗ Flip pi p j: ∗) Replace pi p j with pr pk.
5. LEGALIZEEDGE(pr, pi pk,T)
6. LEGALIZEEDGE(pr, pk p j,T)

The test in line 2 whether an edge is illegal can normally be done by applying
Lemma 9.4. There are some complications because of the presence of the
special points p−1 and p−2. We shall come back to this later; first we prove that
the algorithm is correct.

=⇒

pr
Figure 9.8
All edges created are incident to pr

To ensure the correctness of the algorithm, we need to prove that no illegal
edges remain after all calls to LEGALIZEEDGE have been processed. From
the code of LEGALIZEEDGE it is clear that every new edge created due to the
insertion of pr is incident to pr. Figure 9.8 illustrates this; the triangles that
are destroyed and the new triangles are shown in grey. The crucial observation
(proved below) is that every new edge must be legal, so there is no need to test
them. Together with the earlier observation that an edge can only become illegal
if one of its incident triangles changes, this proves that the algorithm tests any
edge that may become illegal. Hence, the algorithm is correct. Note that, as in
Algorithm LEGALTRIANGULATION, the algorithm cannot get into an infinite
loop, because every flip makes the angle-vector of the triangulation larger. 201

Andrew P. Black Delaunay Triangulations



Introduction
Triangulations

Delaunay Triangulations
Applications

Properties
Computing Delaunay Triangulations

Fix-up the new triangles
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LegalizeEdge
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How to test if pipj is legal?

Section 9.3
COMPUTING THE DELAUNAY

TRIANGULATION

Next we discuss the details of turning the triangulation we get after line 9 (or
line 14) into a Delaunay triangulation. We know from Theorem 9.8 that a
triangulation is a Delaunay triangulation if all its edges are legal. In the spirit
of algorithm LEGALTRIANGULATION, we therefore flip illegal edges until the
triangulation is legal again. The question that remains is which edges may
become illegal due to the insertion of pr. Observe that an edge pi p j that was
legal before can only become illegal if one of the triangles incident to it has
changed. So only the edges of the new triangles need to be checked. This
is done using the subroutine LEGALIZEEDGE, which tests and possibly flips
an edge. If LEGALIZEEDGE flips an edge, other edges may become illegal.
Therefore LEGALIZEEDGE calls itself recursively with such potentially illegal
edges.

pr pi

p j pk
LEGALIZEEDGE(pr, pi p j,T)
1. (∗ The point being inserted is pr, and pi p j is the edge of T that may need

to be flipped. ∗)
2. if pi p j is illegal
3. then Let pi p j pk be the triangle adjacent to pr pi p j along pi p j.
4. (∗ Flip pi p j: ∗) Replace pi p j with pr pk.
5. LEGALIZEEDGE(pr, pi pk,T)
6. LEGALIZEEDGE(pr, pk p j,T)

The test in line 2 whether an edge is illegal can normally be done by applying
Lemma 9.4. There are some complications because of the presence of the
special points p−1 and p−2. We shall come back to this later; first we prove that
the algorithm is correct.

=⇒

pr
Figure 9.8
All edges created are incident to pr

To ensure the correctness of the algorithm, we need to prove that no illegal
edges remain after all calls to LEGALIZEEDGE have been processed. From
the code of LEGALIZEEDGE it is clear that every new edge created due to the
insertion of pr is incident to pr. Figure 9.8 illustrates this; the triangles that
are destroyed and the new triangles are shown in grey. The crucial observation
(proved below) is that every new edge must be legal, so there is no need to test
them. Together with the earlier observation that an edge can only become illegal
if one of its incident triangles changes, this proves that the algorithm tests any
edge that may become illegal. Hence, the algorithm is correct. Note that, as in
Algorithm LEGALTRIANGULATION, the algorithm cannot get into an infinite
loop, because every flip makes the angle-vector of the triangulation larger. 201
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a triangulation again, but not necessarily a Delaunay triangulation. This is
because the addition of pr can make some of the existing edges illegal. To

Figure 9.7
The two cases when adding a point pr
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pr lies in the interior of a triangle pr falls on an edge

remedy this, we call a procedure LEGALIZEEDGE with each potentially illegal
edge. This procedure replaces illegal edges by legal ones through edge flips.
Before we come to the details of this, we give a precise description of the main
algorithm. It will be convenient for the analysis to let P be a set of n+1 points.

Algorithm DELAUNAYTRIANGULATION(P)
Input. A set P of n+1 points in the plane.
Output. A Delaunay triangulation of P.
1. Let p0 be the lexicographically highest point of P, that is, the rightmost

among the points with largest y-coordinate.
2. Let p−1 and p−2 be two points in R2 sufficiently far away and such that P

is contained in the triangle p0 p−1 p−2.
3. Initialize T as the triangulation consisting of the single triangle p0 p−1 p−2.
4. Compute a random permutation p1, p2, . . . , pn of P\{p0}.
5. for r ← 1 to n
6. do (∗ Insert pr into T: ∗)
7. Find a triangle pi p j pk ∈ T containing pr.
8. if pr lies in the interior of the triangle pi p j pk
9. then Add edges from pr to the three vertices of pi p j pk, thereby

splitting pi p j pk into three triangles.
10. LEGALIZEEDGE(pr, pi p j,T)
11. LEGALIZEEDGE(pr, p j pk,T)
12. LEGALIZEEDGE(pr, pk pi,T)
13. else (∗ pr lies on an edge of pi p j pk, say the edge pi p j ∗)
14. Add edges from pr to pk and to the third vertex pl of the

other triangle that is incident to pi p j, thereby splitting the
two triangles incident to pi p j into four triangles.

15. LEGALIZEEDGE(pr, pi pl ,T)
16. LEGALIZEEDGE(pr, pl p j,T)
17. LEGALIZEEDGE(pr, p j pk,T)
18. LEGALIZEEDGE(pr, pk pi,T)
19. Discard p−1 and p−2 with all their incident edges from T.
20. return T200
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Efficiently?
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The effect of inserting point pr into
triangle ∆1 on the data structure D (the
part of D that does not change is
omitted in the figure)
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Using Delaunay Triangulations

Delaunay triangulations help in constructing various things:

Euclidean Minimum Spanning Trees

Approximations to the Euclidean
Traveling Salesperson Problem

α-Hulls
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Euclidean Minimum Spanning Tree

For a set P of n points in the plane, the
Euclidean Minimum Spanning Tree is
the graph with minimum summed edge
length that connects all points in P and
has only the points of P as vertices
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Euclidean Minimum Spanning Tree

For a set P of n points in the plane, the
Euclidean Minimum Spanning Tree is
the graph with minimum summed edge
length that connects all points in P and
has only the points of P as vertices
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Euclidean Minimum Spanning Tree

Lemma: The Euclidean Minimum Spanning Tree does
not have cycles (it really is a tree)

Proof: Suppose G is the shortest connected graph and
it has a cycle. Removing one edge from the cycle makes
a new graph G′ that is still connected but which is
shorter. Contradiction
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Euclidean Minimum Spanning Tree

Lemma: Every edge of the
Euclidean Minimum Spanning Tree
is an edge in the Delaunay graph

Proof: Suppose T is an EMST with
an edge e = pq that is not Delaunay

Consider the circle C that has e as
its diameter. Since e is not Delaunay,
C must contain another point r in P
(different from p and q)

p

q

r
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Euclidean Minimum Spanning Tree

Lemma: Every edge of the
Euclidean Minimum Spanning Tree
is an edge in the Delaunay graph

Proof: (continued)

Either the path in T from r to p
passes through q, or vice versa.
The cases are symmetric, so we can
assume the former case

p

q

r
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Euclidean Minimum Spanning Tree

Lemma: Every edge of the
Euclidean Minimum Spanning Tree
is an edge in the Delaunay graph

Proof: (continued)

Then removing e and inserting pr
instead will give a connected graph
again (in fact, a tree)

Since q was the furthest point from p
inside C, r is closer to q, so T was
not a minimum spanning tree.
Contradiction

p

q

r
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Euclidean Minimum Spanning Tree

How can we compute a Euclidean Minimum Spanning Tree
efficiently?

Union-Find data structure: maintains disjoint sets and allows
these operations:

Union: Takes two sets and makes one new set that is the
union (destroys the two given sets)

Find: Takes one element and returns the name of the set
that contains it

If there are n elements in total, then all Unions together take
O(n logn) time and each Find operation takes O(1) time

Andrew P. Black Delaunay Triangulations



Introduction
Triangulations

Delaunay Triangulations
Applications

Minimum spanning trees
Traveling Salesperson
Shape Approximation

Euclidean Minimum Spanning Tree

Let P be a set of n points in the plane for which we want to
compute the EMST

1 Make a Union-Find structure where every point of P is in
a separate set

2 Construct the Delaunay triangulation DT of P
3 Take all edges of DT and sort them by length
4 For all edges e from short to long:

Let the endpoints of e be p and q
If Find(p) 6= Find(q), then put e in the EMST, and
Union(Find(p),Find(q))
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Euclidean Minimum Spanning Tree

Step 1 takes linear time, the other three steps take O(n logn)
time

Theorem: Let P be a set of n points in the plane.
The Euclidean Minimum Spanning Tree of P can be
computed in O(n logn) time

Andrew P. Black Delaunay Triangulations



Introduction
Triangulations

Delaunay Triangulations
Applications

Minimum spanning trees
Traveling Salesperson
Shape Approximation

The traveling salesperson problem

Given a set P of n points in the plane, the Euclidean Traveling
Salesperson Problem is to compute a tour (cycle) that visits
all points of P and has minimum length

A tour is an order on the points of P (more precisely: a cyclic
order). A set of n points has (n−1)! different tours
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The traveling salesperson problem

We can determine the length of each tour in O(n) time: a
brute-force algorithm to solve the Euclidean Traveling
Salesperson Problem (ETSP) takes O(n) ·O((n−1)!) = O(n!)
time

How bad is n!?
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Efficiency

n n2 2n n!
6 36 64 720
7 49 128 5040
8 64 256 40K
9 81 512 360K

10 100 1024 3.5M
15 225 32K 2,000,000T
20 400 1M
30 900 1G

Clever algorithms can solve instances in O(n2 ·2n) time
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Approximation algorithms

If an algorithm A solves an optimization problem always
within a factor k of the optimum, then A is called an
k-approximation algorithm

If an instance I of ETSP has an optimal solution of length L,
then a k-approximation algorithm will find a tour of length
≤ k ·L

Andrew P. Black Delaunay Triangulations



Introduction
Triangulations

Delaunay Triangulations
Applications

Minimum spanning trees
Traveling Salesperson
Shape Approximation

Approximation algorithms

Consider the diameter problem of a set of n
points. We can compute the real value of
the diameter in O(n logn) time

Suppose we take any point p, determine its
furthest point q, and return their distance.
This takes only O(n) time

Question: Is this an approximation
algorithm?
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Approximation algorithms

Consider the diameter problem of a set of n
points. We can compute the real value of
the diameter in O(n logn) time

Suppose we take any point p, determine its
furthest point q, and return their distance.
This takes only O(n) time

Question: Is this an approximation
algorithm?

p

q
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Approximation algorithms

Suppose we determine the point with
minimum x-coordinate p and the point with
maximum x-coordinate q, and return their
distance. This takes only O(n) time

Question: Is this an approximation algorithm?

Andrew P. Black Delaunay Triangulations



Introduction
Triangulations

Delaunay Triangulations
Applications

Minimum spanning trees
Traveling Salesperson
Shape Approximation

Approximation algorithms

Suppose we determine the point with
minimum x-coordinate p and the point with
maximum x-coordinate q, and return their
distance. This takes only O(n) time
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Approximation algorithms

Suppose we determine the point with
minimum x-coordinate p and the point with
maximum x-coordinate q.
Then we determine the point with minimum
y-coordinate r and the point with maximum
y-coordinate s.
We return max(d(p,q), d(r,s)).
This takes only O(n) time

Question: Is this an approximation algorithm?
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Approximation algorithms

Suppose we determine the point with
minimum x-coordinate p and the point with
maximum x-coordinate q.
Then we determine the point with minimum
y-coordinate r and the point with maximum
y-coordinate s.
We return max(d(p,q), d(r,s)).
This takes only O(n) time

Question: Is this an approximation algorithm?
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Approximation algorithms

Back to Euclidean Traveling
Salesperson:

We will use the EMST to
approximate the ETSP

start at any vertex
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Approximation algorithms

Back to Euclidean Traveling
Salesperson:

We will use the EMST to
approximate the ETSP

follow an edge on one side
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Approximation algorithms

Back to Euclidean Traveling
Salesperson:

We will use the EMST to
approximate the ETSP

. . . to get to another vertex
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Approximation algorithms

Back to Euclidean Traveling
Salesperson:

We will use the EMST to
approximate the ETSP

proceed this way
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proceed this way
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Approximation algorithms

Back to Euclidean Traveling
Salesperson:

We will use the EMST to
approximate the ETSP

proceed this way
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Approximation algorithms

Back to Euclidean Traveling
Salesperson:

We will use the EMST to
approximate the ETSP

skipping visited vertices
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Approximation algorithms

Back to Euclidean Traveling
Salesperson:

We will use the EMST to
approximate the ETSP

and close the tour
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Approximation algorithms

Back to Euclidean Traveling
Salesperson:

We will use the EMST to
approximate the ETSP

and close the tour
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Approximation algorithms

Why is this tour an approximation?

The walk visits every edge twice,
so it has length 2 · |EMST|
The tour skips vertices, which
means the tour has length
≤ 2 · |EMST|
The optimal ETSP-tour is a
spanning tree if you remove any
edge!!!
So |EMST|< |ETSP|

optimal ETSP-tour
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Approximation algorithms

Theorem: Given a set of n points in the plane, a tour visiting
all points whose length is at most twice the minimum possible
can be computed in O(n logn) time

In other words: an O(n logn) time, 2-approximation for ETSP
exists
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α-Shapes

Suppose that you have a set of points in
the plane that were sampled from a
shape

We would like to reconstruct the shape
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α-Shapes

Suppose that you have a set of points in
the plane that were sampled from a
shape

We would like to reconstruct the shape
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α-Shapes

An α-disk is a disk of radius α

The α-shape of a point set P is the
graph with:

the points of P as the vertices, and

vertices p,q are connected by an
edge if there exists an α-disk with
p and q on the disk’s boundary but
no other points of P inside, or on
the boundary, of the disk.
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An α-disk is a disk of radius α

The α-shape of a point set P is the
graph with:

the points of P as the vertices, and

vertices p,q are connected by an
edge if there exists an α-disk with
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the boundary, of the disk.

Andrew P. Black Delaunay Triangulations



Introduction
Triangulations

Delaunay Triangulations
Applications

Minimum spanning trees
Traveling Salesperson
Shape Approximation

α-Shapes

Because of the empty disk property of
Delaunay triangulations (each Delaunay
edge has an empty disk through its
endpoints), every α-shape edge is also a
Delaunay edge

Hence: there are O(n) α-shape edges,
and they cannot properly intersect
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α-Shapes

Given the Delaunay triangulation, we
can determine for any edge all sizes of
empty disks through the endpoints in
O(1) time

So the α-shape can be computed in
O(n logn) time
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Conclusions

The Delaunay triangulation is a versatile structure that can be
computed in O(n logn) time for a set of n points in the plane.

Approximation algorithms are like heuristics, but they come
with a guarantee on the quality of the approximation. They
are useful when an computing an optimal solution is too
time-consuming.
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