
This is an optional homework assignment. Sorry that it is quite late, but I haven’t had a stable internet

connection yet, in order to have a look at what Bryant discussed this week. I tried to come up with some

interesting questions and I am quite unsure, whether you are able to do them / whether you covered the

material in class. So don’t worry, if you have no idea what so ever when trying to solve one of the

problems. The questions that I came up with also only cover a small portion of the previous week’s

material.

1. Simplify the following formula.

 𝑁𝑂𝑇 ((𝑎 𝐴𝑁𝐷 (𝑁𝑂𝑇 𝑏)) 𝑂𝑅 ((𝑁𝑂𝑇 𝑎) 𝐴𝑁𝐷 𝑏) 𝑂𝑅 (𝑎 𝐴𝑁𝐷 𝑏))

o ((𝑎 ∧ 𝑏̅) ∨ (𝑎̅ ∧ 𝑏) ∨ (𝑎 ∧ 𝑏))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

o ((𝑎 ∧ 𝑏̅) ∨ ((𝑎̅ ∨ 𝑎) ∧ 𝑏))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

o ((𝑎 ∧ 𝑏̅) ∨ 𝑏)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

o (𝑎 ∨ 𝑏̅) ∧ 𝑏

o 𝑎̅ ∧ 𝑏̅

2. Simplify the following formula.

 (𝑎̅ → 𝑏) ↔ (𝑎 → 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

o (𝑎 ∨ 𝑏) ↔ (𝑎̅ ∨ 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅

o (𝑎 ∨ 𝑏) ↔ (𝑎 ∧ 𝑏̅)

o ((𝑎 ∨ 𝑏) ∧ (𝑎 ∧ 𝑏̅)) ∨ ((𝑎 ∨ 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅ ∧ (𝑎 ∧ 𝑏̅)̅̅ ̅̅ ̅̅ ̅̅ ̅)

o ((𝑎 ∨ 𝑏) ∧ (𝑎 ∧ 𝑏̅)) ∨ ((𝑎̅ ∧ 𝑏̅) ∧ (𝑎̅ ∨ 𝑏))

o ((𝑎 ∨ 𝑏) ∧ 𝑎 ∧ 𝑏̅) ∨ (𝑎̅ ∧ 𝑏̅ ∧ (𝑎̅ ∨ 𝑏))

o (𝑎 ∧ 𝑏̅) ∨ (𝑎̅ ∧ 𝑏̅)

o 𝑏̅ ∨ (𝑎 ∨ 𝑎̅)

o 𝑏̅

3. Lookup what a multiplexer is. Give the truth table of 𝑓(𝑎, 𝑏, 𝑐), which is described in the

following figure and then try to specify the related 𝐷𝑁𝐹.

o The truth table of 𝑓(𝑎, 𝑏, 𝑐) is described in the following figure.

𝑎 𝑏 𝑐 𝑓(𝑎, 𝑏, 𝑐)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

o (𝑎̅ ∧ 𝑏 ∧ 𝑐̅) ∨ (𝑎̅ ∧ 𝑏 ∧ 𝑐) ∨ (𝑎̅ ∧ 𝑏 ∧ 𝑐) ∨ (𝑎 ∧ 𝑏 ∧ 𝑐)

4. Given are the following functions, where 𝑥 ∈ ℕ.

 𝑅(𝑥) ∶ 𝑥 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 3

 𝑆(𝑥) ∶ 𝑥 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 6

 𝑃(𝑥) ∶ 𝑥 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟

Verbally define the following statements and state whether they are true or false.

 𝑅(10)

o 10 is divisible by 3

o 𝑓𝑎𝑙𝑠𝑒

 ∃ 𝑥 [𝑅(𝑥)]

o natural numbers exist, that are divisible by 3

o 𝑡𝑟𝑢𝑒

 ∀ 𝑥 [𝑅(𝑥)]

o all natural number is divisible by 3

o 𝑓𝑎𝑙𝑠𝑒

 ∀ 𝑥 [𝑆(𝑥) → 𝑅(𝑥)]

o if a natural number is divisible by 6, it is also divisible by 3

o 𝑡𝑟𝑢𝑒

 ∃ 𝑥 [𝑃(𝑥) ∧ 𝑆(𝑥 + 1)]

o natural numbers exist, such that they are prime numbers and their successor is

divisible by 3

o 𝑡𝑟𝑢𝑒

 ∃! 𝑥 [𝑃(𝑥) ∧ 𝑆(𝑥 + 1)]

o exactly one natural number exists, such that it is a prime number and its

successor is divisible by 3

o 𝑓𝑎𝑙𝑠𝑒

 ∀ 𝑥 [𝑅(𝑥) ∨ 𝑅(𝑥 + 1) ∨ 𝑅(𝑥 + 2)]

o for every natural number, either itself or one of its two successors is divisible

by 3

o 𝑡𝑟𝑢𝑒

5. Determine without a calculator.

 (79 ∗ 1027 − 53) 𝑚𝑜𝑑 5

o 4 ∗ 27 − 3

o 4 ∗ 3 − 3

o 4

 (653 ∗ 95 − 87 ∗ 294) 𝑚𝑜𝑑 9

o 23 ∗ 5 − 6 ∗ 24

o 8 ∗ 5 − 6 ∗ 7

o 4 − 6

o 7

 (1658 ∗ 9 − 48 ∗ 173) 𝑚𝑜𝑑 14

o 258 ∗ 9 − 6 ∗ 33

o 210∗5+8 ∗ 9 − 6 ∗ 33

o 2105
∗ 28 ∗ 9 − 6 ∗ 27

o 25 ∗ 4 ∗ 9 − 6 ∗ 13

o 4 − 8

o 10

6. Lookup how the International Standard Book Number with ten digits is defined and calculate

the checksum of the following one.

 3 − 8348 − 0094 − ?

o (1 ∗ 3 + 2 ∗ 8 + 3 ∗ 3 + 4 ∗ 4 + 5 ∗ 8 + 6 ∗ 0 + 7 ∗ 0 + 8 ∗ 9 + 9 ∗ 4) 𝑚𝑜𝑑 11

o (3 + 5 + 9 + 5 + 7 + 0 + 0 + 6 + 3) 𝑚𝑜𝑑 11

o (38) 𝑚𝑜𝑑 11

o 5

7. Write a program in Python that uses the following function in order to generate a truth table.

 𝑓(𝐴, 𝐵, 𝐶, 𝐷) = 𝐴𝐵̅ ∨ 𝐴𝐶̅𝐷 ∨ 𝐴𝐵𝐷 ∨ 𝐶̅𝐷̅

8. Write a program in Python that checks whether a given number 𝑡 is a prime number.

o I have three possibilities in mind, but there are many more. Since I am only

rephrasing each one, feel free to come to my office hours if you want to learn

more about them.

o Try to divide the given number in a loop from 1 to √𝑡 and look at the

remainders. If all remainders are greater than zero, then the given number is a

prime number. This is the easiest and most obvious solution, which I would

have expected. Please note that the upper bound of the loop is √𝑡, in order to

optimize the number of divisions.

o Using the sieve of Eratosthenes reduces the number of divisions, but requires

more space in memory. Feel free to look it up, since it is quite easy to

understand and it is a relatively popular algorithm related to prime numbers.

o The primality teat by Agrawal, Kayal and Saxena would be the most

sophisticated one. I have this one in mind, because it is the first primality test

that is general, polynomial, deterministic and unconditional. I obviously didn’t

expect that someone would have come up with this one and you also don’t have

to understand it.

9. Before smartphones gained popularity, 𝑇9 has been a usual way to implement a fast way to

insert textual content. Think about how you would implement the conversion from the number

sequence into strings in Python. You don’t need to write the code, I would just like you to think

about this problem. This question is by the way not related to the content of the previous week.

o The solution is actually quite simple. A dictionary is being used, where the

number sequences are the keys and their values are arrays that contain the

related words. The words within the arrays are furthermore ordered by their

likelihood.

o Even though my described approach would work perfectly fine, it is not

necessarily the approach that is being used or has been used. As with every

problem, there are most certainly several solutions.

print('A' + '\t' + 'B' + '\t' + 'C' + '\t' + 'D' + '\t' + 'f')

for i in range(0, pow(2, 4)):

 A = bool((i >> 3) % 2)

 B = bool((i >> 2) % 2)

 C = bool((i >> 1) % 2)

 D = bool((i >> 0) % 2)

 f = (A and not B) or (A and not C and D) or (A and B and D) or (not C and not D)

 print(str(A) + '\t' + str(B) + '\t' + str(C) + '\t' + str(D) + '\t' + str(f))

print('A' + '\t' + 'B' + '\t' + 'C' + '\t' + 'D' + '\t' + 'f')

