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a language is a set of strings

®» can be finite
» can be infinite

®» can be empty

= pbut whatis a string?




a string Is a sequence of
symlols

» always finite

=» can be empty

®» pbut what are symbols?




an alphabet defines a set of
symlols

» mostly finite
®» mostly nonempty

» wriften asX orTl

®» Ccan we have an example?

» ¥ ={qb,c}




a string is therefore defined
over an alphabet of symbols

® Ccan we have an example?

® qccbhcca

®» the empty string is special case

» it is written as ¢




there are several operations
defined for string

®» |[ength
™ |accbcaal =7

» |g|=0

®» concatenation

®» concatenating a and b yields ab

®» reverse

R
®» qcchb” = bcca

= many more




and we can how have a
look at some languages

» {a,b,c ab,ac ba}

» {a}
» {}=0=+{c}




what are some possibillities
to define a language?

» cnumeration - what we already did
® regular expressions — we learn about that tomorrow
®» qutomatas — we learn about that today

®» grammars —you will learn about that later on in your
graduate program — hopefully from me, because i
love grammars

» set notation - {x | x begins with an a}

= many more



a note on languages in
Schaum's outline

» he talks about operations on languages

= you actually need to know more about a language, in
order to be able to perform operations on

» negating alanguage is therefore valid for some
languages, while it is invalid for others

» this is why i will not talk about operations on languages
yet
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let us talk about finite state
machines

» we have to talk about finite state machines, before
we can define regular languages

» finite state machine and finite automata are by the
way synonyms

®» finite automata are like small computers, with limited
memory — they are usually qu




an example without furhter
explanation

» such an automaton can be used, in order to
®» generate / accept strings

®» generate / recognize languages




the formal description of A
finite automata as a 5 tupel

» M=(Q,%6q,F)

» () — aset of states — finite

» Y —the alphabet / a set of symbols — finite with € ¢ X
» §— a transition function-Q x X - Q

= g, - astarting state —with q, € Q

» [ —qaset of accepting / final states — with F € Q



but wait, the example is not
complete?

» computer scientist are lazy, so we handle the transition
function quite loosely

= missing transitions are therefore defined, to just end in
a dead state —so they will never end in an accpeting
state

NN 0,
- (1) (@) 0
0
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notation - L(M)

» defines the language, that is being recognized by M

» |t therefore stands for the set of strings, that is being
accepted by M




let us formalize the way finite
state machines work

» |et M be a finite state machine
» |[etw=w;..w, be astring where w; € X

» M accepts w, if there is a sequence of states ry ...1,
where r; € Q, such that

w» o= q()
» 5(r,wiy1) = Tig1

» r. €F




definitfion — regular language

» O language is a regular language, iff some finite state
machine recognizes it

» note the term iff

» poth directions are therefore valid




some examples of corner
cases

» {1-the empty language

R

» {c} - the language containing the empty string

"®




Nnow It IS time for you to
exersice

» ¥ ={q, b}

» L ={w|w=aba}
» L ={w|w=abaorw=aaa}

» [ ={w|wdoes contain aba in it}

» | ={w|wdoes not contain aabb in it}

» [ ={w|wcontains an odd number of a's and an odd




okay, the last one is hot a
regular language

» the reason is, that finite state machines do not have a
memory

» pbut how can we actually prove that a language is not
regulare

» with the pumping lemma for regular languages, but
you are going to learn about that later on in your
graduate program




finite state machines can
describe real problems

» design for example a finite state machine, that reads
a binary number from the msb to the Isb and decides,
whether the number is divisble by 3

» msb = most significant bit

® |spb = least significant bit

» ¥ ={01}
» =1{0,11,110,1001,...}



finite automatas are closed
under certain operations

®» ynion-1Ly UL,
®» concatenation —Lq o L,

» kleene /star-L"




but what does closed
actually mean?

» fL /Ly /L, areregularlanguages, their union / con-
catenation / kleene will also be a regular language

= Wwe are going to prove that on the next set of slides




can we have an example of
these operationse

» > ={ab,cd}
» A = {aaq, b}
» B ={cc d}

» AUB=/{aa,b,cc d}
®» Ao B = {aacc,aad, bcc, bd}

» A ={¢ aa,b,aab, baa, bb,aaaaq, ...}
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our finite state machines so
far were deterministic

= given a current state and the next symbol from the
input, we knew exaclty what to do

» fthere were no choices or any form of randomness
® this is how computers actually should be

® |etf us infroduce nondeterminism, what behaves slightly
different



terminology

» DFA — deterministic finite state automaton

» NFA — nondeterministic finite state automaton

= we are going to talk about NFAs in this part of the
lecture, as they are nondeterministic — contrary to
what we have had so far




what are we going to allow
from now one

» multiple edges that go out of a state, that have the

same label
—
—\1) «
“W <

» cpsilon edges




let us formalize our 5 tupel
again for NFAS

» M=(Q,%6q,F)

» (- aset of states - finite

» Y —the alphabet / a set of symbols — finite with € ¢ X
= §— a transition function - Q x =, - P(Q)

= g, - astarting state —with q, € Q

» [ —qaset of accepting / final states — with F € Q

» note, that the only difference to DFASs lies within the
transition function



how about the acceptance
of strings with NFAs?

®» |et M be a NFA
» |[etw=w;..w, be astring where w; € X

» M accepts w, if there is a sequence of states ry ...1,
where r; € Q, such that

w» o= q()
® 741 €6(rywige)

» r. €F

» n other words — the NFA accepts, if there is at least
one valid path that ends in a final state



one first exercise to get
cofortable with NFAs

» ¥ ={q, b}
» [ ={w|wends with two b's}
®» notfe, that is usually easier to come up with an NFA,

than it is fto come up with a DFA — NFAs are also usually
more compact




but are NFAs more powerful
then DFAS?

» to clarify it a little further —is it possible to define
languages beyond that are more advanced than
regular languages®e

= Nope, sorry

® VOU dre going to see a proof by construction later in
your graduate program, that converts any NFA into an
equivalent DFA

=» DFA < NFA



sO we were talking about
the term closed earlier

®» since we now know, that DFAs and NFAs are
equivalent, we can use the nondeterminism to prove
the earlier statement
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sO we were talking about
the term closed earlier

®» concatenation




would anyone like to have
more exercisese

» L ={w|w=0}-solve this with exaclty three states

» | = {w|wcontains an even number of a's or exactly




