Languages

Simon Niklaus

a language is a set of strings

- can be finite
- can be infinite
- can be empty
- but what is a string?

a string is a sequence of symbols

- always finite
- can be empty
- but what are symbols?

an alphabet defines a set of symbols

- mostly finite
- mostly nonempty
- written as Σ or Γ
- can we have an example?
 - $\Sigma = \{a, b, c\}$

a string is therefore defined over an alphabet of symbols

- can we have an example?
 - accbcca
- the empty string is special case
 - it is written as ε

there are several operations defined for string

length

■ |accbcaa| = 7

 $\bullet |\varepsilon| = 0$

- concatenation
 - concatenating a and b yields ab

reverse

- $accb^{R} = bcca$
- many more

and we can now have a look at some languages

- {a, b, c, ab, ac, ba}
- ► {a}
- $\{\} = \emptyset \neq \{\varepsilon\}$

what are some possibilities to define a language?

- enumeration what we already did
- regular expressions we learn about that tomorrow
- automatas we learn about that today
- grammars you will learn about that later on in your graduate program – hopefully from me, because i love grammars
- set notation $\{x \mid x \text{ begins with an } a\}$
- many more

a note on languages in Schaum's outline

- he talks about operations on languages
- you actually need to know more about a language, in order to be able to perform operations on
- negating a language is therefore valid for some languages, while it is invalid for others
- this is why i will not talk about operations on languages yet

Regular Languages

Simon Niklaus

10

let us talk about finite state machines

11

- we have to talk about finite state machines, before we can define regular languages
- finite state machine and finite automata are by the way synonyms
- finite automata are like small computers, with limited memory – they are usually qu

an example without furhter explanation

such an automaton can be used, in order to

- generate / accept strings
- generate / recognize languages

the formal description of a finite automata as a 5 tupel

• $M = (Q, \Sigma, \delta, q_0, F)$

- Q a set of states finite
- Σ the alphabet / a set of symbols finite with $\varepsilon \notin \Sigma$
- δ a transition function $Q \times \Sigma \rightarrow Q$
- q_0 a starting state with $q_0 \in Q$
- F a set of accepting / final states with $F \subseteq Q$

but wait, the example is not complete?

- computer scientist are lazy, so we handle the transition function quite loosely
- missing transitions are therefore defined, to just end in a dead state – so they will never end in an accpeting state

notation - L(M)

- defines the language, that is being recognized by M
- it therefore stands for the set of strings, that is being accepted by M

let us formalize the way finite state machines work

- Iet M be a finite state machine
- let $w = w_1 \dots w_n$ be a string where $w_i \in \Sigma$
- *M* accepts *w*, if there is a sequence of states $r_0 \dots r_n$ where $r_i \in Q$, such that
 - $r_0 = q_0$

•
$$\delta(r_i, w_{i+1}) = r_{i+1}$$

• $r_n \in F$

definition – regular language

- a language is a regular language, iff some finite state machine recognizes it
- note the term iff
- both directions are therefore valid

some examples of corner cases

{} - the empty language

• $\{\varepsilon\}$ - the language containing the empty string

now it is time for you to exersice

• $\Sigma = \{a, b\}$

- $L = \{w \mid w = aba\}$
- $L = \{w \mid w = aba \text{ or } w = aaa\}$
- $L = \{w \mid w \text{ does contain } aba \text{ in it}\}$
- $L = \{w \mid w \text{ does not contain } aabb \text{ in it}\}$
- $L = \{w \mid w \text{ contains an odd number of } a's \text{ and an odd } w$

okay, the last one is not a regular language

- the reason is, that finite state machines do not have a memory
- but how can we actually prove that a language is not regular?
- with the pumping lemma for regular languages, but you are going to learn about that later on in your graduate program

finite state machines can describe real problems

- design for example a finite state machine, that reads a binary number from the msb to the lsb and decides, whether the number is divisble by 3
- msb = most significant bit
- Isb = least significant bit
- $\Sigma = \{0,1\}$
- $L = \{0, 11, 110, 1001, ...\}$

finite automatas are closed under certain operations

• union – $L_1 \cup L_2$

- concatenation $L_1 \circ L_2$
- kleene / star L^*

but what does closed actually mean?

- if $L / L_1 / L_2$ are regular languages, their union / concatenation / kleene will also be a regular language
- we are going to prove that on the next set of slides

can we have an example of these operations?

- $\Sigma = \{a, b, c, d\}$
- $A = \{aa, b\}$
- $\bullet \quad B = \{cc, d\}$
- $A \cup B = \{aa, b, cc, d\}$
- $A \circ B = \{aacc, aad, bcc, bd\}$
- $A^* = \{\varepsilon, aa, b, aab, baa, bb, aaaa, ...\}$

Nondeterminism

Simon Niklaus

25

our finite state machines so far were deterministic

- given a current state and the next symbol from the input, we knew exactly what to do
- there were no choices or any form of randomness
- this is how computers actually should be
- let us introduce nondeterminism, what behaves slightly different

terminology

- DFA deterministic finite state automaton
- NFA nondeterministic finite state automaton
- we are going to talk about NFAs in this part of the lecture, as they are nondeterministic – contrary to what we have had so far

what are we going to allow from now on?

multiple edges that go out of a state, that have the same label

epsilon edges

28

let us formalize our 5 tupel again for NFAs

- $M = (Q, \Sigma, \delta, q_0, F)$
- Q a set of states finite
- Σ the alphabet / a set of symbols finite with $\varepsilon \notin \Sigma$
- δ a transition function $Q \times \Sigma_{\varepsilon} \to P(Q)$
- q_0 a starting state with $q_0 \in Q$
- F a set of accepting / final states with $F \subseteq Q$
- note, that the only difference to DFAs lies within the transition function

how about the acceptance of strings with NFAs?

Iet M be a NFA

- let $w = w_1 \dots w_n$ be a string where $w_i \in \Sigma$
- *M* accepts *w*, if there is a sequence of states $r_0 \dots r_n$ where $r_i \in Q$, such that
 - $r_0 = q_0$
 - $r_{i+1} \in \delta(r_i, w_{i+1})$
 - $r_n \in F$
- in other words the NFA accepts, if there is at least one valid path that ends in a final state

one first exercise to get cofortable with NFAs

- $\Sigma = \{a, b\}$
- $L = \{w \mid w \text{ ends with two } b's\}$
- note, that is usually easier to come up with an NFA, than it is to come up with a DFA – NFAs are also usually more compact

but are NFAs more powerful then DFAs?

- to clarify it a little further is it possible to define languages beyond that are more advanced than regular languages?
- nope, sorry
- you are going to see a proof by construction later in your graduate program, that converts any NFA into an equivalent DFA

 $\bullet \mathsf{DFA} \leftrightarrow \mathsf{NFA}$

so we were talking about the term closed earlier

 since we now know, that DFAs and NFAs are equivalent, we can use the nondeterminism to prove the earlier statement

union

so we were talking about the term closed earlier

concatenation

kleene / star

34

would anyone like to have more exercises?

- $L = \{w \mid w = 0\}$ solve this with exactly three states
- $L = \{w \mid w \text{ contains an even number of } a's \text{ or exactly} \}$