
Languages
Simon Niklaus

1

a language is a set of strings

 can be finite

 can be infinite

 can be empty

 but what is a string?

2

a string is a sequence of

symbols

 always finite

 can be empty

 but what are symbols?

3

an alphabet defines a set of

symbols

 mostly finite

 mostly nonempty

 written as Σ or Γ

 can we have an example?

 Σ = 𝑎, 𝑏, 𝑐

4

a string is therefore defined

over an alphabet of symbols

 can we have an example?

 𝑎𝑐𝑐𝑏𝑐𝑐𝑎

 the empty string is special case

 it is written as 휀

5

there are several operations

defined for string

 length

 𝑎𝑐𝑐𝑏𝑐𝑎𝑎 = 7

 휀 = 0

 concatenation

 concatenating 𝑎 and 𝑏 yields 𝑎𝑏

 reverse

 𝑎𝑐𝑐𝑏𝑅 = 𝑏𝑐𝑐𝑎

 many more

6

and we can now have a

look at some languages

 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑎𝑐, 𝑏𝑎

 𝑎

 = ∅ ≠ 휀

7

what are some possibilities

to define a language?

 enumeration – what we already did

 regular expressions – we learn about that tomorrow

 automatas – we learn about that today

 grammars – you will learn about that later on in your

graduate program – hopefully from me, because i

love grammars

 set notation - 𝑥 | 𝑥 begins with an 𝑎

 many more

8

a note on languages in

Schaum‘s outline

 he talks about operations on languages

 you actually need to know more about a language, in

order to be able to perform operations on

 negating a language is therefore valid for some

languages, while it is invalid for others

 this is why i will not talk about operations on languages

yet

9

Regular

Languages
Simon Niklaus

10

let us talk about finite state

machines

 we have to talk about finite state machines, before

we can define regular languages

 finite state machine and finite automata are by the

way synonyms

 finite automata are like small computers, with limited

memory – they are usually qu

11

an example without furhter

explanation

 such an automaton can be used, in order to

 generate / accept strings

 generate / recognize languages

12

the formal description of a

finite automata as a 5 tupel

 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

 𝑄 – a set of states – finite

 Σ – the alphabet / a set of symbols – finite with ε ∉ Σ

 𝛿 – a transition function – 𝑄 × Σ → 𝑄

 𝑞
0
– a starting state – with 𝑞

0
∈ 𝑄

 𝐹 – a set of accepting / final states – with 𝐹 ⊆ 𝑄

13

but wait, the example is not

complete?

 computer scientist are lazy, so we handle the transition

function quite loosely

 missing transitions are therefore defined, to just end in

a dead state – so they will never end in an accpeting

state

14

notation - 𝐿 𝑀

 defines the language, that is being recognized by 𝑀

 it therefore stands for the set of strings, that is being

accepted by 𝑀

15

let us formalize the way finite

state machines work

 let 𝑀 be a finite state machine

 let 𝑤 = 𝑤1 …𝑤𝑛 be a string where 𝑤𝑖 ∈ Σ

 𝑀 accepts 𝑤, if there is a sequence of states 𝑟0 …𝑟𝑛

where 𝑟𝑖 ∈ 𝑄, such that

 𝑟0 = 𝑞
0

 𝛿 𝑟𝑖, 𝑤𝑖+1 = 𝑟𝑖+1

 𝑟𝑛 ∈ 𝐹

16

definition – regular language

 a language is a regular language, iff some finite state

machine recognizes it

 note the term iff

 both directions are therefore valid

17

some examples of corner

cases

 - the empty language

 휀 - the language containing the empty string

18

now it is time for you to

exersice

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎 or 𝑤 = 𝑎𝑎𝑎

 𝐿 = 𝑤 | 𝑤 does contain 𝑎𝑏𝑎 in it

 𝐿 = 𝑤 | 𝑤 does not contain 𝑎𝑎𝑏𝑏 in it

 𝐿 = 𝑤 | 𝑤 contains an odd number of 𝑎′s and an odd

19

okay, the last one is not a

regular language

 the reason is, that finite state machines do not have a

memory

 but how can we actually prove that a language is not

regular?

 with the pumping lemma for regular languages, but

you are going to learn about that later on in your

graduate program

20

finite state machines can

describe real problems

 design for example a finite state machine, that reads

a binary number from the msb to the lsb and decides,

whether the number is divisble by 3

 msb = most significant bit

 lsb = least significant bit

 Σ = 0,1

 𝐿 = 0,11,110,1001,…

21

finite automatas are closed

under certain operations

 union – 𝐿1 ∪ 𝐿2

 concatenation – 𝐿1 ∘ 𝐿2

 kleene / star – 𝐿∗

22

but what does closed

actually mean?

 if 𝐿 / 𝐿1 / 𝐿2 are regular languages, their union / con-

catenation / kleene will also be a regular language

 we are going to prove that on the next set of slides

23

can we have an example of

these operations?

 Σ = 𝑎, 𝑏, 𝑐, 𝑑

 𝐴 = 𝑎𝑎, 𝑏

 𝐵 = 𝑐𝑐, 𝑑

 𝐴 ∪ 𝐵 = 𝑎𝑎, 𝑏, 𝑐𝑐, 𝑑

 𝐴 ∘ 𝐵 = 𝑎𝑎𝑐𝑐, 𝑎𝑎𝑑, 𝑏𝑐𝑐, 𝑏𝑑

 𝐴∗ = 휀, 𝑎𝑎, 𝑏, 𝑎𝑎𝑏, 𝑏𝑎𝑎, 𝑏𝑏, 𝑎𝑎𝑎𝑎,…

24

Nondeterminism
Simon Niklaus

25

our finite state machines so

far were deterministic

 given a current state and the next symbol from the

input, we knew exaclty what to do

 there were no choices or any form of randomness

 this is how computers actually should be

 let us introduce nondeterminism, what behaves slightly

different

26

terminology

 DFA – deterministic finite state automaton

 NFA – nondeterministic finite state automaton

 we are going to talk about NFAs in this part of the

lecture, as they are nondeterministic – contrary to

what we have had so far

27

what are we going to allow

from now on?

 multiple edges that go out of a state, that have the

same label

 epsilon edges

28

let us formalize our 5 tupel

again for NFAs

 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

 𝑄 – a set of states – finite

 Σ – the alphabet / a set of symbols – finite with ε ∉ Σ

 𝛿 – a transition function – 𝑄 × Σ휀 → 𝑃 𝑄

 𝑞
0
– a starting state – with 𝑞

0
∈ 𝑄

 𝐹 – a set of accepting / final states – with 𝐹 ⊆ 𝑄

 note, that the only difference to DFAs lies within the

transition function

29

how about the acceptance

of strings with NFAs?

 let 𝑀 be a NFA

 let 𝑤 = 𝑤1 …𝑤𝑛 be a string where 𝑤𝑖 ∈ Σ

 𝑀 accepts 𝑤, if there is a sequence of states 𝑟0 …𝑟𝑛

where 𝑟𝑖 ∈ 𝑄, such that

 𝑟0 = 𝑞
0

 𝑟𝑖+1 ∈ 𝛿 𝑟𝑖, 𝑤𝑖+1

 𝑟𝑛 ∈ 𝐹

 in other words – the NFA accepts, if there is at least

one valid path that ends in a final state

30

one first exercise to get

cofortable with NFAs

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 ends with two 𝑏′s

 note, that is usually easier to come up with an NFA,

than it is to come up with a DFA – NFAs are also usually

more compact

31

but are NFAs more powerful

then DFAs?

 to clarify it a little further – is it possible to define

languages beyond that are more advanced than

regular languages?

 nope, sorry

 you are going to see a proof by construction later in

your graduate program, that converts any NFA into an

equivalent DFA

 DFA ↔ NFA

32

so we were talking about

the term closed earlier

 since we now know, that DFAs and NFAs are

equivalent, we can use the nondeterminism to prove

the earlier statement

 union

33

so we were talking about

the term closed earlier

 concatenation

 kleene / star

34

would anyone like to have

more exercises?

 𝐿 = 𝑤 | 𝑤 = 0 – solve this with exaclty three states

 𝐿 = 𝑤 | 𝑤 contains an even number of 𝑎′s or exactly

35

