
Languages
Simon Niklaus

1

a language is a set of strings

 can be finite

 can be infinite

 can be empty

 but what is a string?

2

a string is a sequence of

symbols

 always finite

 can be empty

 but what are symbols?

3

an alphabet defines a set of

symbols

 mostly finite

 mostly nonempty

 written as Σ or Γ

 can we have an example?

 Σ = 𝑎, 𝑏, 𝑐

4

a string is therefore defined

over an alphabet of symbols

 can we have an example?

 𝑎𝑐𝑐𝑏𝑐𝑐𝑎

 the empty string is special case

 it is written as 𝜀

5

there are several operations

defined for string

 length

 𝑎𝑐𝑐𝑏𝑐𝑎𝑎 = 7

 𝜀 = 0

 concatenation

 concatenating 𝑎 and 𝑏 yields 𝑎𝑏

 reverse

 𝑎𝑐𝑐𝑏𝑅 = 𝑏𝑐𝑐𝑎

 many more

6

and we can now have a

look at some languages

 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑎𝑐, 𝑏𝑎

 𝑎

 = ∅ ≠ 𝜀

7

what are some possibilities

to define a language?

 enumeration – what we already did

 regular expressions – we learn about that tomorrow

 automatas – we learn about that today

 grammars – you will learn about that later on in your

graduate program – hopefully from me, because i

love grammars

 set notation - 𝑥 | 𝑥 begins with an 𝑎

 many more

8

a note on languages in

Schaum‘s outline

 he talks about operations on languages

 you actually need to know more about a language, in

order to be able to perform operations on

 negating a language is therefore valid for some

languages, while it is invalid for others

 this is why i will not talk about operations on languages

yet

9

Regular

Languages
Simon Niklaus

10

let us talk about finite state

machines

 we have to talk about finite state machines, before

we can define regular languages

 finite state machine and finite automata are by the

way synonyms

 finite automata are like small computers, with limited

memory – they are usually qu

11

an example without furhter

explanation

 such an automaton can be used, in order to

 generate / accept strings

 generate / recognize languages

12

the formal description of a

finite automata as a 5 tupel

 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

 𝑄 – a set of states – finite

 Σ – the alphabet / a set of symbols – finite with ε ∉ Σ

 𝛿 – a transition function – 𝑄 × Σ → 𝑄

 𝑞
0
– a starting state – with 𝑞

0
∈ 𝑄

 𝐹 – a set of accepting / final states – with 𝐹 ⊆ 𝑄

13

but wait, the example is not

complete?

 computer scientist are lazy, so we handle the transition

function quite loosely

 missing transitions are therefore defined, to just end in

a dead state – so they will never end in an accpeting

state

14

notation - 𝐿 𝑀

 defines the language, that is being recognized by 𝑀

 it therefore stands for the set of strings, that is being

accepted by 𝑀

15

let us formalize the way finite

state machines work

 let 𝑀 be a finite state machine

 let 𝑤 = 𝑤1 …𝑤𝑛 be a string where 𝑤𝑖 ∈ Σ

 𝑀 accepts 𝑤, if there is a sequence of states 𝑟0 …𝑟𝑛

where 𝑟𝑖 ∈ 𝑄, such that

 𝑟0 = 𝑞
0

 𝛿 𝑟𝑖, 𝑤𝑖+1 = 𝑟𝑖+1

 𝑟𝑛 ∈ 𝐹

16

definition – regular language

 a language is a regular language, iff some finite state

machine recognizes it

 note the term iff

 both directions are therefore valid

17

some examples of corner

cases

 - the empty language

 𝜀 - the language containing the empty string

18

now it is time for you to

exersice

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎 or 𝑤 = 𝑎𝑎𝑎

 𝐿 = 𝑤 | 𝑤 does contain 𝑎𝑏𝑎 in it

 𝐿 = 𝑤 | 𝑤 does not contain 𝑎𝑎𝑏𝑏 in it

 𝐿 = 𝑤 | 𝑤 contains an odd number of 𝑎′s and an odd

19

okay, the last one is not a

regular language

 the reason is, that finite state machines do not have a

memory

 but how can we actually prove that a language is not

regular?

 with the pumping lemma for regular languages, but

you are going to learn about that later on in your

graduate program

20

finite state machines can

describe real problems

 design for example a finite state machine, that reads

a binary number from the msb to the lsb and decides,

whether the number is divisble by 3

 msb = most significant bit

 lsb = least significant bit

 Σ = 0,1

 𝐿 = 0,11,110,1001,…

21

finite automatas are closed

under certain operations

 union – 𝐿1 ∪ 𝐿2

 concatenation – 𝐿1 ∘ 𝐿2

 kleene / star – 𝐿∗

22

but what does closed

actually mean?

 if 𝐿 / 𝐿1 / 𝐿2 are regular languages, their union / con-

catenation / kleene will also be a regular language

 we are going to prove that on the next set of slides

23

can we have an example of

these operations?

 Σ = 𝑎, 𝑏, 𝑐, 𝑑

 𝐴 = 𝑎𝑎, 𝑏

 𝐵 = 𝑐𝑐, 𝑑

 𝐴 ∪ 𝐵 = 𝑎𝑎, 𝑏, 𝑐𝑐, 𝑑

 𝐴 ∘ 𝐵 = 𝑎𝑎𝑐𝑐, 𝑎𝑎𝑑, 𝑏𝑐𝑐, 𝑏𝑑

 𝐴∗ = 𝜀, 𝑎𝑎, 𝑏, 𝑎𝑎𝑏, 𝑏𝑎𝑎, 𝑏𝑏, 𝑎𝑎𝑎𝑎,…

24

Nondeterminism
Simon Niklaus

25

our finite state machines so

far were deterministic

 given a current state and the next symbol from the

input, we knew exaclty what to do

 there were no choices or any form of randomness

 this is how computers actually should be

 let us introduce nondeterminism, what behaves slightly

different

26

terminology

 DFA – deterministic finite state automaton

 NFA – nondeterministic finite state automaton

 we are going to talk about NFAs in this part of the

lecture, as they are nondeterministic – contrary to

what we have had so far

27

what are we going to allow

from now on?

 multiple edges that go out of a state, that have the

same label

 epsilon edges

28

let us formalize our 5 tupel

again for NFAs

 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

 𝑄 – a set of states – finite

 Σ – the alphabet / a set of symbols – finite with ε ∉ Σ

 𝛿 – a transition function – 𝑄 × Σ𝜀 → 𝑃 𝑄

 𝑞
0
– a starting state – with 𝑞

0
∈ 𝑄

 𝐹 – a set of accepting / final states – with 𝐹 ⊆ 𝑄

 note, that the only difference to DFAs lies within the

transition function

29

how about the acceptance

of strings with NFAs?

 let 𝑀 be a NFA

 let 𝑤 = 𝑤1 …𝑤𝑛 be a string where 𝑤𝑖 ∈ Σ

 𝑀 accepts 𝑤, if there is a sequence of states 𝑟0 …𝑟𝑛

where 𝑟𝑖 ∈ 𝑄, such that

 𝑟0 = 𝑞
0

 𝑟𝑖+1 ∈ 𝛿 𝑟𝑖, 𝑤𝑖+1

 𝑟𝑛 ∈ 𝐹

 in other words – the NFA accepts, if there is at least

one valid path that ends in a final state

30

one first exercise to get

cofortable with NFAs

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 ends with two 𝑏′s

 note, that is usually easier to come up with an NFA,

than it is to come up with a DFA – NFAs are also usually

more compact

31

but are NFAs more powerful

then DFAs?

 to clarify it a little further – is it possible to define

languages beyond that are more advanced than

regular languages?

 nope, sorry

 you are going to see a proof by construction later in

your graduate program, that converts any NFA into an

equivalent DFA

 DFA ↔ NFA

32

so we were talking about

the term closed earlier

 since we now know, that DFAs and NFAs are

equivalent, we can use the nondeterminism to prove

the earlier statement

 union

33

so we were talking about

the term closed earlier

 concatenation

 kleene / star

34

would anyone like to have

more exercises?

 𝐿 = 𝑤 | 𝑤 = 0 – solve this with exaclty three states

 𝐿 = 𝑤 | 𝑤 contains an even number of 𝑎′s or exactly

35

