
Regular Expressions
Simon Niklaus

1

preface

 regular expressions are another way to describe

regular languages

 regular expressions are the prefered way when writing

a program, in order to utilize a regular language

 it is just handier to write a short string instead of an

entire finite state machine

2

regular expressions are

defined recursively

 everything in our alphabet Σ is a regular language

 𝑅1 ∪ 𝑅2 is a regular expression

 𝑅1 ∘ 𝑅2 is a regular expression

 𝑅∗ is a regular expression

 𝜀 is a regular expression

 ∅ is a regular expression

 𝑅 is a regular expression

 regular expressions are therefore per definition closed

under union, concatenation and kleene / star

3

the operations have a

tightness of binding

 𝑅∗ > 𝑅1 ∘ 𝑅2 > 𝑅1 ∪ 𝑅2

 kleene / star therefore has the highest priority,

followed by concatenation and last but not least

union

 if there are any doubts, i would suggest simply using

parentheses

4

a few more notations

 𝑅1 ∘ 𝑅2 is sometimes simply written as 𝑅1𝑅2

 𝑅1 ∪ 𝑅2 is sometimes written as 𝑅1|𝑅2

 𝑅+ is equal to 𝑅𝑅∗

5

just a simple practice to start

with

 try to place parenthesis in between the following

regular expressions

 𝑎 ∪ 𝑎 𝑏 ∗ 𝑎 𝑏 ∗

 𝑎 𝑎 𝑏 ∪ 𝑎 𝑎 𝑏 ∪ 𝑏 ∗ 𝑎

 𝑎 + 𝑏 | 𝑎 𝑏 𝑎

6

just a hint on common

pitfalls

 𝑅 ∪ 𝜀 ≠ 𝑅

 𝑅 ∘ 𝜀 = 𝑅

 𝑅 ∪ ∅ = 𝑅

 𝑅 ∘ ∅ = ∅ ≠ 𝑅

 ∅∗ = 𝜀

7

every regular expression

defines a regular language

 we again use 𝐿 𝑅 to refer to the language of a

regular expression

 every regular expression can be converted into a finite

state machine and vice versa

 DFA ↔ NFA ↔ REGEX

 you will see the proof for this later on in your graduate

program

8

let us have some exercises

again

9

source: Sipser

let us have some exercises

again

 give a regular expression for each of the following

languages

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎 or 𝑤 = 𝑎𝑎𝑎

 𝐿 = 𝑤 | 𝑤 does contain 𝑎𝑏𝑎 in it

 𝐿 = 𝑤 | 𝑤 contains at least three 𝑎′s

 𝐿 = 𝑤 | 𝑤 has an 𝑎 at every odd position

10

let us have some exercises

again

 design a DFA for 𝑎∗𝑏∗𝑎+

 design a DFA for 𝑎∗ 𝑏𝑏𝑎+ ∗

 define a regular expression, that describes email

addresses in the form 𝑤 | 𝑤 starts with an arbitrary
nonzero number of 𝑎′s, 𝑏′s and 𝑐′s and ends

with @𝑝𝑑𝑥. 𝑒𝑑𝑢}

 given 𝑤 | 𝑤 contains an even number of 𝑎′s and an
odd number of 𝑏′s and does not contain the

substring 𝑎𝑏, define a regular expression and design a

DFA with no more than five states

11

Practical Regular

Expressions
Simon Niklaus

12

regular expressions in

programming languages

 are generally broader than what the theory defines

 there is not a particular standard, but every

programming languages uses similar notations for

regular expressions

 using regular expressions in a program can come in

handy

 to validate a certain input

 to search or replace somethin within a string

13

regular expressions in python

 are being made available trough the 𝑟𝑒 module

 we define them as a string, which is then being

compiled into a different object

 this way, we can use a regular expression multiple

times, without the computer having to figure out how

to utilize it over and over again

14

the case of simply matching

characters

 if we want to check, whether a string equals another

fixed string by using a regular expression, we can do so

as shown below

 some metacharacters have to be escaped with a

leading \, because they are being used within the

regular expressions themseleves

15

import re

regex = re.compile('abc')

result = regex.match('abc')

. ^ $ * + ? { } [] \ | ()

escaping metacharacters

 parenthesise are for example being used within the

definition of regular expressions

 so if we want to match parenthesise, we have to

escape them as already mentioned – the example

below gives you example of how this is being done

16

import re

regex = re.compile('\(abc\)')

result = regex.match('(abc)')

always use the online

documentation

 so match behaves slightly different to what we

actually expected

17

source: https://docs.python.org/3/library/re.html#regular-expression-objects

always use the online

documentation

 since the third version of python, they actually added

another function

18

source: https://docs.python.org/3/library/re.html#regular-expression-objects

we can use this with our

notion of regular expressions

 go ahead and create a new python file – or simply

use the console if you prefer that

 we have already seen the expression 𝑎∗𝑏∗𝑎+ earlier

and use this expression within python

 use this, in order to match different strings

19

import re

regex = re.compile('a*b*a+')

result = regex.fullmatch('ba')

print(result)

some extensions to regular

expressions

 brackets can be used, in order to require that one

symbol out of the group has to occur

 𝑎𝑏𝑐 refers to either an 𝑎 or a 𝑏 or a 𝑐

 [𝑎𝑏𝑐𝑑𝑒𝑓𝑔ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟𝑠𝑡𝑢𝑣𝑤𝑥𝑦𝑧] is not nice

 with the minus sign within brackets, a whole range of

characters can be defined at once

 𝑎 − 𝑧 refers to lowercase letters

 𝐴 − 𝑍 refers to uppercase letters

 0 − 9 refers to digits

20

some extensions to regular

expressions

 circumflexes can be used in combination with

brackets, in order to require that something that is not

within the group has to occur

 ^𝑎𝑏𝑐 refers to anything but 𝑎 or a 𝑏 or a 𝑐

 [^𝑎 − 𝑧] refers to anything but a lowercase letter

 there are several shorthands for common used groups

 \d is equal to [0 − 9]

 \s is equal to [\t \r \n]

 \w is equal to [𝑎 − 𝑧𝐴 − 𝑍0 − 9 __]

21

some extensions to regular

expressions

 a dot will refer to any character, except a new line

character

 ∙ will refer to anything but \r or \n

 the excpetion of new lines is kind of special to pyton, but

this behavior can be changed while compiling the

regular expression

 a questionmark will define, that something occurs zero

times or excalty once

 𝑎? refers to 𝑎 or 𝜀

 𝑎 − 𝑧 ? refers to a lowercase letter or 𝜀

22

let us practice what we

have learned so far

 define an extended regular expression, that describes

email addresses in the form 𝑤 | 𝑤 starts with an
arbitrary nonzero number of 𝑎′s, 𝑏′s and 𝑐′s and ends

with @𝑝𝑑𝑥. 𝑒𝑑𝑢}

 define an extended regular expression, that is able to

describe western names – id est only having a first and

a last name out of the latin alphabet

23

utilizing groups

 everything inside a parenthesis is a group

 groups can be used, to figure out what the string that

we matched initially contained

 the object that we are getting back can be used, in

order to access this information

24

import re

regex = re.compile('(a*)(b*)(a+)')

result = regex.fullmatch('ba')

print(result)

print(result.group(0))

print(result.group(1))

print(result.group(2))

using search instead of

match

 sometimes, we want to search for multiple occurences

of a regular expression within a string

 there are several ways to do that, one of them is listed

below

 regular expressions are then searched from left to right

and it will always return the biggest match

25

import re

regex = re.compile('[a-z]+')

result = regex.findall('jlasdf alksjdfk

asdAflj lasd4fklj')

print(result)

backup slide

 if you see this, we were faster than i expected

 but do not worry, since i have this nice backup slide

and a good looking potato

26

