
Regular Expressions
Simon Niklaus

1

preface

 regular expressions are another way to describe

regular languages

 regular expressions are the prefered way when writing

a program, in order to utilize a regular language

 it is just handier to write a short string instead of an

entire finite state machine

2

regular expressions are

defined recursively

 everything in our alphabet Σ is a regular language

 𝑅1 ∪ 𝑅2 is a regular expression

 𝑅1 ∘ 𝑅2 is a regular expression

 𝑅∗ is a regular expression

 𝜀 is a regular expression

 ∅ is a regular expression

 𝑅 is a regular expression

 regular expressions are therefore per definition closed

under union, concatenation and kleene / star

3

the operations have a

tightness of binding

 𝑅∗ > 𝑅1 ∘ 𝑅2 > 𝑅1 ∪ 𝑅2

 kleene / star therefore has the highest priority,

followed by concatenation and last but not least

union

 if there are any doubts, i would suggest simply using

parentheses

4

a few more notations

 𝑅1 ∘ 𝑅2 is sometimes simply written as 𝑅1𝑅2

 𝑅1 ∪ 𝑅2 is sometimes written as 𝑅1|𝑅2

 𝑅+ is equal to 𝑅𝑅∗

5

just a simple practice to start

with

 try to place parenthesis in between the following

regular expressions

 𝑎 ∪ 𝑎 𝑏 ∗ 𝑎 𝑏 ∗

 𝑎 𝑎 𝑏 ∪ 𝑎 𝑎 𝑏 ∪ 𝑏 ∗ 𝑎

 𝑎 + 𝑏 | 𝑎 𝑏 𝑎

6

just a hint on common

pitfalls

 𝑅 ∪ 𝜀 ≠ 𝑅

 𝑅 ∘ 𝜀 = 𝑅

 𝑅 ∪ ∅ = 𝑅

 𝑅 ∘ ∅ = ∅ ≠ 𝑅

 ∅∗ = 𝜀

7

every regular expression

defines a regular language

 we again use 𝐿 𝑅 to refer to the language of a

regular expression

 every regular expression can be converted into a finite

state machine and vice versa

 DFA ↔ NFA ↔ REGEX

 you will see the proof for this later on in your graduate

program

8

let us have some exercises

again

9

source: Sipser

let us have some exercises

again

 give a regular expression for each of the following

languages

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎 or 𝑤 = 𝑎𝑎𝑎

 𝐿 = 𝑤 | 𝑤 does contain 𝑎𝑏𝑎 in it

 𝐿 = 𝑤 | 𝑤 contains at least three 𝑎′s

 𝐿 = 𝑤 | 𝑤 has an 𝑎 at every odd position

10

let us have some exercises

again

 design a DFA for 𝑎∗𝑏∗𝑎+

 design a DFA for 𝑎∗ 𝑏𝑏𝑎+ ∗

 define a regular expression, that describes email

addresses in the form 𝑤 | 𝑤 starts with an arbitrary
nonzero number of 𝑎′s, 𝑏′s and 𝑐′s and ends

with @𝑝𝑑𝑥. 𝑒𝑑𝑢}

 given 𝑤 | 𝑤 contains an even number of 𝑎′s and an
odd number of 𝑏′s and does not contain the

substring 𝑎𝑏, define a regular expression and design a

DFA with no more than five states

11

Practical Regular

Expressions
Simon Niklaus

12

regular expressions in

programming languages

 are generally broader than what the theory defines

 there is not a particular standard, but every

programming languages uses similar notations for

regular expressions

 using regular expressions in a program can come in

handy

 to validate a certain input

 to search or replace somethin within a string

13

regular expressions in python

 are being made available trough the 𝑟𝑒 module

 we define them as a string, which is then being

compiled into a different object

 this way, we can use a regular expression multiple

times, without the computer having to figure out how

to utilize it over and over again

14

the case of simply matching

characters

 if we want to check, whether a string equals another

fixed string by using a regular expression, we can do so

as shown below

 some metacharacters have to be escaped with a

leading \, because they are being used within the

regular expressions themseleves

15

import re

regex = re.compile('abc')

result = regex.match('abc')

. ^ $ * + ? { } [] \ | ()

escaping metacharacters

 parenthesise are for example being used within the

definition of regular expressions

 so if we want to match parenthesise, we have to

escape them as already mentioned – the example

below gives you example of how this is being done

16

import re

regex = re.compile('\(abc\)')

result = regex.match('(abc)')

always use the online

documentation

 so match behaves slightly different to what we

actually expected

17

source: https://docs.python.org/3/library/re.html#regular-expression-objects

always use the online

documentation

 since the third version of python, they actually added

another function

18

source: https://docs.python.org/3/library/re.html#regular-expression-objects

we can use this with our

notion of regular expressions

 go ahead and create a new python file – or simply

use the console if you prefer that

 we have already seen the expression 𝑎∗𝑏∗𝑎+ earlier

and use this expression within python

 use this, in order to match different strings

19

import re

regex = re.compile('a*b*a+')

result = regex.fullmatch('ba')

print(result)

some extensions to regular

expressions

 brackets can be used, in order to require that one

symbol out of the group has to occur

 𝑎𝑏𝑐 refers to either an 𝑎 or a 𝑏 or a 𝑐

 [𝑎𝑏𝑐𝑑𝑒𝑓𝑔ℎ𝑖𝑗𝑘𝑙𝑚𝑛𝑜𝑝𝑞𝑟𝑠𝑡𝑢𝑣𝑤𝑥𝑦𝑧] is not nice

 with the minus sign within brackets, a whole range of

characters can be defined at once

 𝑎 − 𝑧 refers to lowercase letters

 𝐴 − 𝑍 refers to uppercase letters

 0 − 9 refers to digits

20

some extensions to regular

expressions

 circumflexes can be used in combination with

brackets, in order to require that something that is not

within the group has to occur

 ^𝑎𝑏𝑐 refers to anything but 𝑎 or a 𝑏 or a 𝑐

 [^𝑎 − 𝑧] refers to anything but a lowercase letter

 there are several shorthands for common used groups

 \d is equal to [0 − 9]

 \s is equal to [\t \r \n]

 \w is equal to [𝑎 − 𝑧𝐴 − 𝑍0 − 9 __]

21

some extensions to regular

expressions

 a dot will refer to any character, except a new line

character

 ∙ will refer to anything but \r or \n

 the excpetion of new lines is kind of special to pyton, but

this behavior can be changed while compiling the

regular expression

 a questionmark will define, that something occurs zero

times or excalty once

 𝑎? refers to 𝑎 or 𝜀

 𝑎 − 𝑧 ? refers to a lowercase letter or 𝜀

22

let us practice what we

have learned so far

 define an extended regular expression, that describes

email addresses in the form 𝑤 | 𝑤 starts with an
arbitrary nonzero number of 𝑎′s, 𝑏′s and 𝑐′s and ends

with @𝑝𝑑𝑥. 𝑒𝑑𝑢}

 define an extended regular expression, that is able to

describe western names – id est only having a first and

a last name out of the latin alphabet

23

utilizing groups

 everything inside a parenthesis is a group

 groups can be used, to figure out what the string that

we matched initially contained

 the object that we are getting back can be used, in

order to access this information

24

import re

regex = re.compile('(a*)(b*)(a+)')

result = regex.fullmatch('ba')

print(result)

print(result.group(0))

print(result.group(1))

print(result.group(2))

using search instead of

match

 sometimes, we want to search for multiple occurences

of a regular expression within a string

 there are several ways to do that, one of them is listed

below

 regular expressions are then searched from left to right

and it will always return the biggest match

25

import re

regex = re.compile('[a-z]+')

result = regex.findall('jlasdf alksjdfk

asdAflj lasd4fklj')

print(result)

backup slide

 if you see this, we were faster than i expected

 but do not worry, since i have this nice backup slide

and a good looking potato

26

