Reqgular Expressions

Simon Niklaus

oreface

® regular expressions are another way to describe
regular languages

» regular expressions are the prefered way when writing
a program, in order to utilize a regular language

» it is just handier to write a short string instead of an
entire finite state machine

regular expressions are
defined recursively

» cverything in our alphabet X is a regular language
= R, UR, isaregular expression

®» R.oR,Iisaregularexpression

= R*is aregular expression

® ¢ s aregular expression

= @ is aregular expression

= (R)is aregular expression

® regular expressions are therefore per definition closed
under union, concatenation and kleene / star

the operations have o
fightness of binding

» R* > R1°R2>R1UR2

» kleene / star therefore has the highest priority,
followed by concatenation and last but not least
union

» if there are any doubts, i would suggest simply using
parentheses

a few more notations

® R, oR,issometimes simply written as R, R,
= R, UR, issometimes written as R, |R,

» R*isequalto RR*

just a simple practice to start
with

» fry to place parenthesis in between the following
regular expressions

» gUab*ab”®

®» gab Uaab UDb*a

» ag+blaba

just a hinf on common
pitfalls

RU&e#R
Roe=R
RUP=R
Ro@=0+R
0 = {e}

every regular expression
defines a regular language

» we again use L(R) to refer to the language of @
regular expression

» cvery regular expression can be converted into a finite
state machine and vice versa

» DFA & NFA & REGEX

= you will see the proof for this later on in your graduate
program

let us have some exercises
again

For each of the following languages, give two strings that are members and two
strings that are #or members—a total of four strings for each part. Assume the
alphabet ¥ = {a,b} in all parts.

a. a'b” e. YaX'bX aX"
b. a(ba)'d f. aba Ubab

c. a*Ub" g. (eUa)b

d. (aaa)” h. (aUbaUbb)¥"

source: Sipser

let us have some exercises
again

» give aregular expression for each of the following
languages

» ¥ = {q,b}

» L ={w]|w=aba}

» L ={w|w=abaorw=aaa}

» [={w|wdoes contain aba in it}

» [={w|w contains at least three a's}

» [={w]|whasana at every odd position}

let us have some exercises
again

» design a DFA for a*b*a*
» design a DFA for a*(bba™)*

» define aregular expression, that describes email
addresses in the form {w | w starts with an arbitrary
nonzero number of a's, b's and c¢'s and ends
with @pdx. edu}

= given {w | w contains an even number of a's and an
odd number of b's and does not contain the
substring ab, define a regular expression and design @
DFA with no more than five states

Practical Regular
Expressions

Simon Niklaus

regular expressions in
programming languages

» are generally broader than what the theory defines

» fthere is not a particular standard, but every
programming languages uses similar notations for
regular expressions

® ysing regular expressions in a program can come in
handy

» o validate a certain input

» to search or replace somethin within a string

regular expressions in python

® are being made available trough the re module

» we define them as a string, which is then being
compiled into a different object

® fhis way, we can use a regular expression mulfiple
times, without the computer having to figure out how
to utilize it over and over again

the case of simply matching
characters

» f we want to check, whether a string equals another
fixed string by using a regular expression, we can do so
as shown below

import re
regex = re.compile('abc')
result = regex.match('abc')

®» some metacharacters have to be escaped with a
leading \, because they are being used within the
regular expressions themseleves

S+ 2 LY LT N ()

escaping metacharacters

» parenthesise are for example being used within the
definition of regular expressions

®» 50 if we want to match parenthesise, we have to
escape them as already mentioned — the example
below gives you example of how this is being done

import re
regex = re.compile ('\ (abc\)")
result = regex.match(' (abc) ')

always use the online
documentation

regex. match(string[, pos|, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding
match object. Return wone if the string does not match the pattern; note that this is different from a zero-length

match.

The optional pos and endpos parameters have the same meaning as for the s=arch () method.

>>> pattern = re.compile ("o")
>>»> pattern.match ("dog™) # No matech as "o" is not at the start of "dog".

>>»> pattern.match ("deg™, 1) # Match as "o" is the Znd character of "dog".
<_sre.SRE Match object; span=(1, 2}, match="o'>

[

If you want to locate a match anywhere in sfring, use search () instead (see also search() vs. match()).

» so match behaves slightly different to what we
actually expected

source: https://docs.python.org/3/library/re.html#regular-expression-objects

always use the online
documentation

» since the third version of python, they actually added
another function

regex. fullmatch(string[, pos[, endpos]])
If the whole string matches this regular expression, return a corresponding match object. Return none if the
string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile ("o[gh]™)

»>»> pattern.fullmatch ("dog™) # No match as "o" is not at the start of "dog®.
>»>» pattern.fullmatch ("ogre™) # No match as not the full string matches.
>>>» pattern.fullmatch ("doggie™, 1, 3) # Matches within given Iimits.

< _sre.SRE_Match cbject; span=(1, 3), match="og'>

MNew in version 3.4

source: https://docs.python.org/3/library/re.html#regular-expression-objects

we can use this with our
notfion of regular expressions

» go ahead and create a new python file — or simply
use the console if you prefer that

= we have already seen the expression a*b*a™ earlier
and use this expression within python

import re

regex = re.compile('a*b*a+"')
result = regex.fullmatch('ba')
print (result)

» yse this, in order to match different strings

some extensions to regular
expressions

» pbrackets can be used, in order to require that one
symbol out of the group has to occur

» [abc] refers to eitheranaoraborac

® [abcdef ghijklmnopqgrstuvwxyz] is not nice

» with the minus sign within brackets, a whole range of
characters can be defined at once

» [a — z]| refers to lowercase letters
» [A — 7] refers to uppercase letters

» [0 — 9] refers to digits

some extensions to regular
expressions

» circumflexes can be used in combination with
brackets, in order to require that something that is not
within the group has to occur

» [~abc] refers to anything buta oraborac

» [7q — z] refers to anything but a lowercase letter

» there are several shorthands for common used groups
» \dis equal to [0 — 9]
®» \sisequalto[\t\r\n]
» \wisequalto[a—zA—-Z0—-9_]

some extensions to regular
expressions

» (O dot will refer to any character, except a new line
character

» . will refer to anything but \r or \n

» fthe excpetion of new lines is kind of special to pyton, but
this behavior can be changed while compiling the
regular expression

» a guestionmark will define, that something occurs zero
times or excalty once

» g?referstoaore

» [a — z]? refers to a lowercase letter or ¢

let us practice what we
have learned so far

» define an extended regular expression, that describes
email addresses in the form {w | w starts with an
arbitrary nonzero number of a's, b's and ¢'s and ends
with @pdx. edu}

» define an extended regular expression, that is able to
describe western names - id est only having a first and
a last name out of the latfin alphabet

utilizing groups

» cverything inside a parenthesis is a group

® groups can be used, to figure out what the string that
we matched initially contained

» fthe object that we are getting back can be used, in
order to access this information

import re

regex = re.compile(' (a*) (b*) (at+) ")
result = regex.fullmatch('ba')
print (result)

print (result.group(0))
print (result.group(l))
print (result.group(2))

using search instead of
match

» sometimes, we want to search for multiple occurences
of a regular expression within a string

» fthere are several ways to do that, one of them is listed
below

® regular expressions are then searched from left to right
and it will always return the biggest match

import re

regex = re.compile('[a-z]+")

result = regex.findall('jlasdf alksjdfk
asdAfl] lasd4fklj')

print(result)

backup slide

» |f you see this, we were faster than i expected

» but do not worry, since i have this nice backup slide
and a good looking potato

