Turing Machines

Simon Niklaus

recap — alphabets, strings
and languages

» an alphabet defines a set of symbols
» ¥ ={a,b,c}

» (O string is a sequence of symbols

® qccbhcca

= O language is a set of strings

» {q,b,c ab,ac, ba}

recap — finite automarto

» what is a finite state machine again?

1

0
Q rl R
__)__:]_)M
0]

» sych an automaton can be used, in order to

®» generate / accept strings

®» generate / recognize languages

recap — DFAS

» M=(Q,%6q,F)

» () — aset of states — finite
» Y —the alphabet / a set of symbols — finite with € ¢ X

» §— a transition function-Q x X - Q

= g, - astarting state —with q, € Q

» [—qaset of accepting / final states — with F € Q

recap — NFAS

» M=(Q,%6q,F)

» () — aset of states — finite
» Y —the alphabet / a set of symbols — finite with € ¢ X

» §—a fransition function — Q x =, - P(Q)

= g, - astarting state —with q, € Q

» [—qaset of accepting / final states — with F € Q

» note, that the only difference to DFASs lies within the
transition function

recap — exercises

» ¥ ={q, b}

» L ={w|w=aba}
» L ={w|w=abaorw=aaa}

» [={w|wdoes contain aba in it}

» | ={w|wdoes not contain aabb in it}

» [={w|wcontains an odd number of a's and an odd

recap — exercises

» the last exercise is not a regular language — to prove
this, the pumping lemma for regular languages can
be applied

» |fjs sufficient for us though, to realize that finite
automata do not have memory and the given
language would require some sort of memory

chomsky hierarchy

» fype 3 -regular
» finite state automata
=» No memory / only a history, finite

» {w|wis of the form a™b with n > 0}

» type 2 — context-free
®» nondeterministic pushdown automata
» stack, infinite

» {w|wis of the form a™b" with n > 0}

chomsky hierarchy

» fype |1 — context-sensitive
» |inear bounded nondeterministic turing machines
» fape, linear bounded

» {w|wis of the form a™b"c"with n > 0}

» type 0 —-recursively enumerable
= turing machines
» tape, infinite

» {w | wisaprime number}

note: VqEIpVxVy[((q <pAX>DAY> 1)) - (xxy+ p)] where q,p,x,y €N

an outline to start with

» there are variations within the definition from textbook
to textkbook — these variations are all equivalent

characteristics of the finite
automaton

= Wwe are going to start with deterministic turing
machines — the controlling finite automaton is
therefore chosen to be deterministic

» there is only one accept state and furthermore an
additional reject state — the latter one is similar to a
dead state

» both of these states take effect immediately

» this property will be useful with nondeterminism

» the head of the turing machine initially points at the
leftmost cell

characteristics ofthe tape

» |f s infinite, even though it has a lower bound — every
unused cell contains the blank symbol u

®» we can use each transition of the conftrolling finite
automaton to read and write to the tape — the head
can furthermore be moved to the left or to the right

» when working with finite state machines, we implicitly
had an input string that we have read successively

» turing machines do not have an input stream

» we therefore place the input string on the tape initially

uses of furing machines

» we used finite automata in order to recognize
languages

» turing machines can be used for the same task

» they are capable to recognize a larger set of langauges
though

®» we can however access and interpret the content of
the tape after the turing machine has finished

» g turing machine can therefore be used to do actual
computations

» fthe output is simply placed on the tape, from which it
can be retfrieved afterwards

the formal description of A
turing machine as a 7 tupel

» | = (Q; Z; F, 51 q()' qaccept’ qreject)

» Q- asef of states —finife

» ¥ —the input alphabet —finte with ug X and e ¢ X

» [- the tape alphabet —-fintewithuel"rand X cT
» §— a transition function-Q XT' - Q X T X {£, R}
= g,— astart state —with g, € Q

— a accepft state -with q,..€ Q and q_.. # q

qaccept acc rej

Qroject — O reject state — with Qe € Q and Qroj Qe

note: the franisition function is deterministic

the new fransition function

® given a current state of the controlling finite
automaton, we read a symbol from the current cell

» we then write a symbol to the same cell and move
either left or right afterwards

w = h R

O+ >

» what if we are on the left side of the tape and move
the head left again — the head will stay at the leftmost
cell

the new fransition function

» since the definition forces us to always write a symbol
to the tape, how do we leave a cell unchanged - we
basically write the same symbol again

w o, R

O+ >

® since thisis a quite common problem, we use @
shorthand for that and simply omit the symbol on the
right hand side of the transition

note: not wanting to move the head would be useless

possible outcomes of a
computation

» the turing machine can either
= halt and accept
= halt and reject

= [00p

» note that it is impossible to loop with a finite state
machine on a given input string, because strings are
finite in length

= you might ask why a turing machine might loop, but
this is actually an important property, that enables
entirely new possibilities

let us do some obvious
exercises to start with

» ¥ ={q, b}

» L ={w|w=aba}
» L ={w|w=abaorw=aaa}

» [={w|wdoes contain aba in it}

» | ={w|wdoes not contain aabb in it}

» [={w|wcontains an odd number of a's and an odd

back fo the chomsky
hierarchy

» from the chomsky hierarchy
» fype 3 -regular

= type O —recursively enumerable

» ¢ finite state machine is basically just a turing machine
that does not write to the tape and always moves one
step to the right

® regular languages are therefore a subset of recursively
enumerable languages

and now something more
advanced

» ¥ ={q, b}

» | ={w|wis of the form a™b" with n > 0}
» | ={w|wisof the form a™b"c" with n > 0}
®» since these languages are not regular, regular

languages are a proper subest of recursively
enumerable languages

describing furing machines
on a higher level

» describing the controlling finite automaton is a rather
dull and inconvenient task

®» cqQuivalent to programming languages, we can
infroduce a layer of abstraction by describing an
algorithm on a higher level

» there is no specific notion of such languages for turing
machines

» ¢ higher level description is therefore sufficient, once it is
convincing enough

let us practice this higher
level descriptions

» ¥ ={q, b}

» | ={w|wcontains an equal number of a's and b's}
» [={w|wcontains twice as many a's as b's}

» [={w|wdoes not contain as many a's as b's}

a possible solution for the first
language

1. start by shiftfing everything on the tape one cell to the right and
placing a special symbol into the leffmost cell

» we are therefore able to detect the lower bound of our tape
2. scan for an a from the lower to the upper bound of the tape
» if an a has been found, cross it out and go to 3
» if no a has been found, go to 4
3. scan for a b from the lower to the upper bound of the tape
» f a b has been found, cross it out and go to 2
» |f no b has been found, reject
4. scan for a b from the lower to the upper bound of the tape
» if a b has been found, fail

» f nO b has been found, accept

definition — configurations

» g configuration represents the entire state of a turing
machine — it is therefore basically a snapshot

» what we have to store in a configuration

» fthe content of the tape

» the state of the controlling finite automaton

» the current position of the head

» this can be done with a single string, where the state is
simply inserted in front of the currently located cell

™ abq,cd

note: obviously, Q and I' have to be disjoint

definition — computation
histories

» O sequence of configurations represent a
computation history, if

» the sequence starts with the start configuration

» there were only legal transitions between two
consecutive configurations

» the sequence ends with an accepting or rejecting
configuration

» note that this model of computation is very similar to
the computational model of finite automata

extending the chomsky
hierarchy

® |anguages that are recursive / decidable
= given an input string, the turing machine will always halt

» it will therefore either end in an accepting or rejecting
state and therefore accept or reject the input string

®» |anguages that are recursively enumerable / turing
recognizable / semi decidable

= given an input string that is in the language of the turing
machine, the turing machine will always halt and accept

® given an input string that is not in the language, the turing
machine will either reject or loop

extending the chomsky
hierarchy

» |anguages that are not recursively enumerable / not
turing recognizable

» the turing machine does not even reliably halt for input
strings that are within the language of the turing machine

= f is quite hard to imagine such a language, but proving
its existance is rather easy — we are going to do this in a
moment

note: semi decidable is already not decidable

extending the chomsky
hierarchy

fz\j 4 Decidable Presburger anthmellc,\\\
) 77) 11 [EXPSPACE N
. :,;”EXPTIME)
< 7l o | (Context sensitive LBA
o o O A
51201 2] 2] T |leNE .
% —c% %%_ E ;P qhhnen
't;‘ E % § s = 3 (Context-free ww?
= %D S 5 L: 8 i; Det. CF a"b"
é' SIl2ll =] 2 S E Regular a
= e W e
&_/ A \k ~ J///

source: http://www.cs.virginia.edu/~robins/cs6160/

the acceptance problem
for turing machine

® given a turing machine, is it possible to decide
whether this turing machine halts on a certain input

» of course not, otherwise every turing machine could be
converted info one that always halts

= in order to prove that it is recognizable, we have to
present a turing machine that recognizes this language

» this can easily be done by simply emulating this turing
machine on our turing machine

® this language is commonly defined and used

» Ary = {(M,w) | Mis a turing machine and M accepfts w}

the acceptance problem
for turing machine

» since we know that 4, is furing recognizable, A, has
to be not turing recognizable

= otherwise we could simultaneously start the turing
machine for both languages on a given input string

» per definition of furing recognizable languages, one of
them would have to halt

» we could therefore decide Ary

variants of furing machines

®» Qs already mentioned, there are variations within the
definition of touring machines from textboox to
textbook — these variants are all equivalent

» what about a tape that has no lower bound

» cvery time we detect that we are at the leftmost cell and
want to go further left, we shift the content of the tape to
the right

» but how do we detect the left hand side of the tape

» we initially shift the whole tape at the beginning of the
computation to the right and place a special symbol into
the leftmost cell

variants of furing machines

» what about a multitape turing machine — the fransition
function therefore has to be extended

it is quite exhausting to prove this

the tapes are concatenated and stored on a single
tape, separated by a special symbol

the position of each head in each subtape is preserved
through a marking mechanism of symbols

in order to perform a tfransition, all the subtapes have to
be scanned and updated, once the appropriate
transition has been found

whenever a head moves off the rightmost cell of a
subtape, the following tapes have to be shifted

note: i do not expect you to be able to reproduce this proof

turing completeness

» the turing machine is the most universal automaton
that we know so far

» f o computational model is able to simulate a turing
machine, this model is turing complete

» this is quite easy to achive though, since mov for
example is already turing complete

source: www.cl.cam.ac.uk/~sdé01/papers/mov.pdf

nondeterministic turing
Mmachines

» | = (Q; Z; F, 51 q()' qaccept’ qreject)

®» () — g set of states — finite
» ¥ —the input alphabet —finte with ug X and e ¢ X

» [—the tape alphabet - finte withueTrand X €T
®» § - a fransition function—-Q xT' - P(Q XT X {L R})
= g,— astart state —with g, € Q

— a accepft state -with q,..€ Q and q_.. # q

qaccept acc rej

Qroject — O reject state — with Qe € Q and Qroj Qe

note: only the transition function has changed

configurations and
computation histories

= at any given point, a configuration of a
nondeterministic turing machine could have more
than one successor

®» the computation historie is therefore not necessarily a
sequence of configurations any more

®» |t instead resembles a free

» fhis tree therefore contains all possible choices that are
implied through the nondeterminisim

possible outcomes of a
computation

» the nondeterministic turing machine can either

» halt and accept, if any branch of the computation
history accepts

= halt and reject, if all branches of the computation history
reject

» |oop, if no accepting configuration has occured that and
there are still ongoing branches within the history

®» note, that these three possibilities are the same as for
deterministic turing machines — they are just defined

IS @ nondeterministic turing
machine more powerful

» of course not, otherwise we would have a problem
with the definition of the turing completeness

= we can simulate a nondeterministic turing machine on @
deterministic one, by emulating the computational
history

» we therefore have to do a state based search

» O depth first search wo be simple, but would fail to
perform the task, because we could end up in an branch
that never halts

®» (O breath first search has therefore been done, which is
rather complex — the usual proof for example already
requires a deterministic turing machine with three tapes

note: i do not expect you to be able to reproduce this proof

| hope you had fun, aft
least | had

Simon Niklaus

