
Turing Machines
Simon Niklaus

1

recap – alphabets, strings

and languages

 an alphabet defines a set of symbols

 Σ = 𝑎, 𝑏, 𝑐

 a string is a sequence of symbols

 𝑎𝑐𝑐𝑏𝑐𝑐𝑎

 a language is a set of strings

 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑎𝑐, 𝑏𝑎

2

recap – finite automata

 what is a finite state machine again?

 such an automaton can be used, in order to

 generate / accept strings

 generate / recognize languages

3

recap – DFAs

 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

 𝑄 – a set of states – finite

 Σ – the alphabet / a set of symbols – finite with ε ∉ Σ

 𝛿 – a transition function – 𝑄 × Σ → 𝑄

 𝑞
0
– a starting state – with 𝑞

0
∈ 𝑄

 𝐹 – a set of accepting / final states – with 𝐹 ⊆ 𝑄

4

recap – NFAs

 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

 𝑄 – a set of states – finite

 Σ – the alphabet / a set of symbols – finite with ε ∉ Σ

 𝛿 – a transition function – 𝑄 × Σ휀 → 𝑃 𝑄

 𝑞
0
– a starting state – with 𝑞

0
∈ 𝑄

 𝐹 – a set of accepting / final states – with 𝐹 ⊆ 𝑄

 note, that the only difference to DFAs lies within the

transition function

5

recap – exercises

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎 or 𝑤 = 𝑎𝑎𝑎

 𝐿 = 𝑤 | 𝑤 does contain 𝑎𝑏𝑎 in it

 𝐿 = 𝑤 | 𝑤 does not contain 𝑎𝑎𝑏𝑏 in it

 𝐿 = 𝑤 | 𝑤 contains an odd number of 𝑎′s and an odd

6

recap – exercises

 the last exercise is not a regular language – to prove

this, the pumping lemma for regular languages can

be applied

 it is sufficient for us though, to realize that finite

automata do not have memory and the given

language would require some sort of memory

7

chomsky hierarchy

 type 3 – regular

 finite state automata

 no memory / only a history, finite

 𝑤 | 𝑤 is of the form 𝑎𝑛𝑏with 𝑛 ≥ 0

 type 2 – context-free

 nondeterministic pushdown automata

 stack, infinite

 𝑤 | 𝑤 is of the form 𝑎𝑛𝑏𝑛 with 𝑛 ≥ 0

8

chomsky hierarchy

 type 1 – context-sensitive

 linear bounded nondeterministic turing machines

 tape, linear bounded

 𝑤 | 𝑤 is of the form 𝑎𝑛𝑏𝑛𝑐𝑛with 𝑛 ≥ 0

 type 0 – recursively enumerable

 turing machines

 tape, infinite

 𝑤 | 𝑤 is a prime number

9

note: ∀𝑞∃𝑝∀𝑥∀𝑦 𝑞 < 𝑝 ∧ 𝑥 > 1 ∧ 𝑦 > 1 → 𝑥 ∗ 𝑦 ≠ 𝑝 where 𝑞, 𝑝, 𝑥, 𝑦 ∈ ℕ

an outline to start with

 there are variations within the definition from textbook

to textkbook – these variations are all equivalent

10

characteristics of the finite

automaton

 we are going to start with deterministic turing

machines – the controlling finite automaton is

therefore chosen to be deterministic

 there is only one accept state and furthermore an

additional reject state – the latter one is similar to a

dead state

 both of these states take effect immediately

 this property will be useful with nondeterminism

 the head of the turing machine initially points at the

leftmost cell

11

characteristics ofthe tape

 it is infinite, even though it has a lower bound – every

unused cell contains the blank symbol ⊔

 we can use each transition of the controlling finite

automaton to read and write to the tape – the head

can furthermore be moved to the left or to the right

 when working with finite state machines, we implicitly

had an input string that we have read successively

 turing machines do not have an input stream

 we therefore place the input string on the tape initially

12

uses of turing machines

 we used finite automata in order to recognize

languages

 turing machines can be used for the same task

 they are capable to recognize a larger set of langauges

though

 we can however access and interpret the content of

the tape after the turing machine has finished

 a turing machine can therefore be used to do actual

computations

 the output is simply placed on the tape, from which it

can be retrieved afterwards

13

the formal description of a

turing machine as a 7 tupel

 𝑀 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡

 𝑄 – a set of states – finite

 Σ – the input alphabet – finite with ⊔ ∉ Σ and ε ∉ Σ

 Γ – the tape alphabet – finite with ⊔ ∈ Γ and Σ ⊂ Γ

 𝛿 – a transition function – 𝑄 × Γ → 𝑄 × Γ × ℒ,ℛ

 𝑞0 – a start state – with 𝑞0 ∈ 𝑄

 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 – a accept state – with 𝑞𝑎𝑐𝑐 ∈ 𝑄 and 𝑞𝑎𝑐𝑐 ≠ 𝑞𝑟𝑒𝑗

 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 – a reject state – with 𝑞𝑟𝑒𝑗 ∈ 𝑄 and 𝑞𝑟𝑒𝑗 ≠ 𝑞𝑎𝑐𝑐

14

note: the tranisition function is deterministic

the new transition function

 given a current state of the controlling finite

automaton, we read a symbol from the current cell

 we then write a symbol to the same cell and move

either left or right afterwards

 what if we are on the left side of the tape and move

the head left again – the head will stay at the leftmost

cell

15

the new transition function

 since the definition forces us to always write a symbol

to the tape, how do we leave a cell unchanged – we

basically write the same symbol again

 since this is a quite common problem, we use a

shorthand for that and simply omit the symbol on the

right hand side of the transition

16

note: not wanting to move the head would be useless

possible outcomes of a

computation

 the turing machine can either

 halt and accept

 halt and reject

 loop

 note that it is impossible to loop with a finite state

machine on a given input string, because strings are

finite in length

 you might ask why a turing machine might loop, but

this is actually an important property, that enables

entirely new possibilities

17

let us do some obvious

exercises to start with

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎 or 𝑤 = 𝑎𝑎𝑎

 𝐿 = 𝑤 | 𝑤 does contain 𝑎𝑏𝑎 in it

 𝐿 = 𝑤 | 𝑤 does not contain 𝑎𝑎𝑏𝑏 in it

 𝐿 = 𝑤 | 𝑤 contains an odd number of 𝑎′s and an odd

18

back to the chomsky

hierarchy

 from the chomsky hierarchy

 type 3 – regular

 type 0 – recursively enumerable

 a finite state machine is basically just a turing machine

that does not write to the tape and always moves one

step to the right

 regular languages are therefore a subset of recursively

enumerable languages

19

and now something more

advanced

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 is of the form 𝑎𝑛𝑏𝑛 with 𝑛 ≥ 0

 𝐿 = 𝑤 | 𝑤 is of the form 𝑎𝑛𝑏𝑛𝑐𝑛 with 𝑛 ≥ 0

 since these languages are not regular, regular

languages are a proper subest of recursively

enumerable languages

20

describing turing machines

on a higher level

 describing the controlling finite automaton is a rather

dull and inconvenient task

 equivalent to programming languages, we can

introduce a layer of abstraction by describing an

algorithm on a higher level

 there is no specific notion of such languages for turing

machines

 a higher level description is therefore sufficient, once it is

convincing enough

21

let us practice this higher

level descriptions

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 contains an equal number of 𝑎's and 𝑏's

 𝐿 = 𝑤 | 𝑤 contains twice as many 𝑎′s as 𝑏′s

 𝐿 = 𝑤 | 𝑤 does not contain as many 𝑎′s as 𝑏′s

22

a possible solution for the first

language

1. start by shifting everything on the tape one cell to the right and
placing a special symbol into the leftmost cell

 we are therefore able to detect the lower bound of our tape

2. scan for an 𝑎 from the lower to the upper bound of the tape

 if an 𝑎 has been found, cross it out and go to 3

 if no 𝑎 has been found, go to 4

3. scan for a 𝑏 from the lower to the upper bound of the tape

 if a 𝑏 has been found, cross it out and go to 2

 If no 𝑏 has been found, reject

4. scan for a 𝑏 from the lower to the upper bound of the tape

 if a 𝑏 has been found, fail

 if no 𝑏 has been found, accept

23

definition – configurations

 a configuration represents the entire state of a turing

machine – it is therefore basically a snapshot

 what we have to store in a configuration

 the content of the tape

 the state of the controlling finite automaton

 the current position of the head

 this can be done with a single string, where the state is

simply inserted in front of the currently located cell

 𝑎 𝑏 𝑞
7
𝑐 𝑑

24

note: obviously, 𝑄 and Γ have to be disjoint

definition – computation

histories

 a sequence of configurations represent a

computation history, if

 the sequence starts with the start configuration

 there were only legal transitions between two

consecutive configurations

 the sequence ends with an accepting or rejecting

configuration

 note that this model of computation is very similar to

the computational model of finite automata

25

extending the chomsky

hierarchy

 languages that are recursive / decidable

 given an input string, the turing machine will always halt

 it will therefore either end in an accepting or rejecting

state and therefore accept or reject the input string

 languages that are recursively enumerable / turing

recognizable / semi decidable

 given an input string that is in the language of the turing

machine, the turing machine will always halt and accept

 given an input string that is not in the language, the turing

machine will either reject or loop

26

extending the chomsky

hierarchy

 languages that are not recursively enumerable / not

turing recognizable

 the turing machine does not even reliably halt for input

strings that are within the language of the turing machine

 it is quite hard to imagine such a language, but proving

its existance is rather easy – we are going to do this in a

moment

27

note: semi decidable is already not decidable

extending the chomsky

hierarchy

28

source: http://www.cs.virginia.edu/~robins/cs6160/

the acceptance problem

for turing machine

 given a turing machine, is it possible to decide

whether this turing machine halts on a certain input

 of course not, otherwise every turing machine could be

converted into one that always halts

 in order to prove that it is recognizable, we have to

present a turing machine that recognizes this language

 this can easily be done by simply emulating this turing

machine on our turing machine

 this language is commonly defined and used

 𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 is a turing machine and 𝑀 accepts 𝑤

29

the acceptance problem

for turing machine

 since we know that 𝐴𝑇𝑀 is turing recognizable, 𝐴𝑇𝑀 has

to be not turing recognizable

 otherwise we could simultaneously start the turing

machine for both languages on a given input string

 per definition of turing recognizable languages, one of

them would have to halt

 we could therefore decide 𝐴𝑇𝑀

30

variants of turing machines

 as already mentioned, there are variations within the
definition of touring machines from textboox to
textbook – these variants are all equivalent

 what about a tape that has no lower bound

 every time we detect that we are at the leftmost cell and
want to go further left, we shift the content of the tape to
the right

 but how do we detect the left hand side of the tape

 we initially shift the whole tape at the beginning of the
computation to the right and place a special symbol into
the leftmost cell

31

variants of turing machines

 what about a multitape turing machine – the transition

function therefore has to be extended

 it is quite exhausting to prove this

 the tapes are concatenated and stored on a single

tape, separated by a special symbol

 the position of each head in each subtape is preserved

through a marking mechanism of symbols

 in order to perform a transition, all the subtapes have to

be scanned and updated, once the appropriate

transition has been found

 whenever a head moves off the rightmost cell of a

subtape, the following tapes have to be shifted

32

note: i do not expect you to be able to reproduce this proof

turing completeness

 the turing machine is the most universal automaton

that we know so far

 if a computational model is able to simulate a turing

machine, this model is turing complete

 this is quite easy to achive though, since 𝑚𝑜𝑣 for

example is already turing complete

33

source: www.cl.cam.ac.uk/~sd601/papers/mov.pdf

nondeterministic turing

machines

 𝑀 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡

 𝑄 – a set of states – finite

 Σ – the input alphabet – finite with ⊔ ∉ Σ and ε ∉ Σ

 Γ – the tape alphabet – finite with ⊔ ∈ Γ and Σ ⊆ Γ

 𝛿 – a transition function – 𝑄 × Γ → 𝑃 𝑄 × Γ × ℒ,ℛ

 𝑞0 – a start state – with 𝑞0 ∈ 𝑄

 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 – a accept state – with 𝑞𝑎𝑐𝑐 ∈ 𝑄 and 𝑞𝑎𝑐𝑐 ≠ 𝑞𝑟𝑒𝑗

 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 – a reject state – with 𝑞𝑟𝑒𝑗 ∈ 𝑄 and 𝑞𝑟𝑒𝑗 ≠ 𝑞𝑎𝑐𝑐

34

note: only the transition function has changed

configurations and

computation histories

 at any given point, a configuration of a

nondeterministic turing machine could have more

than one successor

 the computation historie is therefore not necessarily a

sequence of configurations any more

 it instead resembles a tree

 this tree therefore contains all possible choices that are

implied through the nondeterminisim

35

possible outcomes of a

computation

 the nondeterministic turing machine can either

 halt and accept, if any branch of the computation

history accepts

 halt and reject, if all branches of the computation history

reject

 loop, if no accepting configuration has occured that and

there are still ongoing branches within the history

 note, that these three possibilities are the same as for

deterministic turing machines – they are just defined

36

is a nondeterministic turing

machine more powerful

 of course not, otherwise we would have a problem

with the definition of the turing completeness

 we can simulate a nondeterministic turing machine on a

deterministic one, by emulating the computational

history

 we therefore have to do a state based search

 a depth first search wo be simple, but would fail to

perform the task, because we could end up in an branch

that never halts

 a breath first search has therefore been done, which is

rather complex – the usual proof for example already

requires a deterministic turing machine with three tapes

37

note: i do not expect you to be able to reproduce this proof

i hope you had fun, at

least i had
Simon Niklaus

38

