
Turing Machines
Simon Niklaus

1

recap – alphabets, strings

and languages

 an alphabet defines a set of symbols

 Σ = 𝑎, 𝑏, 𝑐

 a string is a sequence of symbols

 𝑎𝑐𝑐𝑏𝑐𝑐𝑎

 a language is a set of strings

 𝑎, 𝑏, 𝑐, 𝑎𝑏, 𝑎𝑐, 𝑏𝑎

2

recap – finite automata

 what is a finite state machine again?

 such an automaton can be used, in order to

 generate / accept strings

 generate / recognize languages

3

recap – DFAs

 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

 𝑄 – a set of states – finite

 Σ – the alphabet / a set of symbols – finite with ε ∉ Σ

 𝛿 – a transition function – 𝑄 × Σ → 𝑄

 𝑞
0
– a starting state – with 𝑞

0
∈ 𝑄

 𝐹 – a set of accepting / final states – with 𝐹 ⊆ 𝑄

4

recap – NFAs

 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

 𝑄 – a set of states – finite

 Σ – the alphabet / a set of symbols – finite with ε ∉ Σ

 𝛿 – a transition function – 𝑄 × Σ𝜀 → 𝑃 𝑄

 𝑞
0
– a starting state – with 𝑞

0
∈ 𝑄

 𝐹 – a set of accepting / final states – with 𝐹 ⊆ 𝑄

 note, that the only difference to DFAs lies within the

transition function

5

recap – exercises

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎 or 𝑤 = 𝑎𝑎𝑎

 𝐿 = 𝑤 | 𝑤 does contain 𝑎𝑏𝑎 in it

 𝐿 = 𝑤 | 𝑤 does not contain 𝑎𝑎𝑏𝑏 in it

 𝐿 = 𝑤 | 𝑤 contains an odd number of 𝑎′s and an odd

6

recap – exercises

 the last exercise is not a regular language – to prove

this, the pumping lemma for regular languages can

be applied

 it is sufficient for us though, to realize that finite

automata do not have memory and the given

language would require some sort of memory

7

chomsky hierarchy

 type 3 – regular

 finite state automata

 no memory / only a history, finite

 𝑤 | 𝑤 is of the form 𝑎𝑛𝑏with 𝑛 ≥ 0

 type 2 – context-free

 nondeterministic pushdown automata

 stack, infinite

 𝑤 | 𝑤 is of the form 𝑎𝑛𝑏𝑛 with 𝑛 ≥ 0

8

chomsky hierarchy

 type 1 – context-sensitive

 linear bounded nondeterministic turing machines

 tape, linear bounded

 𝑤 | 𝑤 is of the form 𝑎𝑛𝑏𝑛𝑐𝑛with 𝑛 ≥ 0

 type 0 – recursively enumerable

 turing machines

 tape, infinite

 𝑤 | 𝑤 is a prime number

9

note: ∀𝑞∃𝑝∀𝑥∀𝑦 𝑞 < 𝑝 ∧ 𝑥 > 1 ∧ 𝑦 > 1 → 𝑥 ∗ 𝑦 ≠ 𝑝 where 𝑞, 𝑝, 𝑥, 𝑦 ∈ ℕ

an outline to start with

 there are variations within the definition from textbook

to textkbook – these variations are all equivalent

10

characteristics of the finite

automaton

 we are going to start with deterministic turing

machines – the controlling finite automaton is

therefore chosen to be deterministic

 there is only one accept state and furthermore an

additional reject state – the latter one is similar to a

dead state

 both of these states take effect immediately

 this property will be useful with nondeterminism

 the head of the turing machine initially points at the

leftmost cell

11

characteristics ofthe tape

 it is infinite, even though it has a lower bound – every

unused cell contains the blank symbol ⊔

 we can use each transition of the controlling finite

automaton to read and write to the tape – the head

can furthermore be moved to the left or to the right

 when working with finite state machines, we implicitly

had an input string that we have read successively

 turing machines do not have an input stream

 we therefore place the input string on the tape initially

12

uses of turing machines

 we used finite automata in order to recognize

languages

 turing machines can be used for the same task

 they are capable to recognize a larger set of langauges

though

 we can however access and interpret the content of

the tape after the turing machine has finished

 a turing machine can therefore be used to do actual

computations

 the output is simply placed on the tape, from which it

can be retrieved afterwards

13

the formal description of a

turing machine as a 7 tupel

 𝑀 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡

 𝑄 – a set of states – finite

 Σ – the input alphabet – finite with ⊔ ∉ Σ and ε ∉ Σ

 Γ – the tape alphabet – finite with ⊔ ∈ Γ and Σ ⊂ Γ

 𝛿 – a transition function – 𝑄 × Γ → 𝑄 × Γ × ℒ,ℛ

 𝑞0 – a start state – with 𝑞0 ∈ 𝑄

 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 – a accept state – with 𝑞𝑎𝑐𝑐 ∈ 𝑄 and 𝑞𝑎𝑐𝑐 ≠ 𝑞𝑟𝑒𝑗

 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 – a reject state – with 𝑞𝑟𝑒𝑗 ∈ 𝑄 and 𝑞𝑟𝑒𝑗 ≠ 𝑞𝑎𝑐𝑐

14

note: the tranisition function is deterministic

the new transition function

 given a current state of the controlling finite

automaton, we read a symbol from the current cell

 we then write a symbol to the same cell and move

either left or right afterwards

 what if we are on the left side of the tape and move

the head left again – the head will stay at the leftmost

cell

15

the new transition function

 since the definition forces us to always write a symbol

to the tape, how do we leave a cell unchanged – we

basically write the same symbol again

 since this is a quite common problem, we use a

shorthand for that and simply omit the symbol on the

right hand side of the transition

16

note: not wanting to move the head would be useless

possible outcomes of a

computation

 the turing machine can either

 halt and accept

 halt and reject

 loop

 note that it is impossible to loop with a finite state

machine on a given input string, because strings are

finite in length

 you might ask why a turing machine might loop, but

this is actually an important property, that enables

entirely new possibilities

17

let us do some obvious

exercises to start with

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎

 𝐿 = 𝑤 | 𝑤 = 𝑎𝑏𝑎 or 𝑤 = 𝑎𝑎𝑎

 𝐿 = 𝑤 | 𝑤 does contain 𝑎𝑏𝑎 in it

 𝐿 = 𝑤 | 𝑤 does not contain 𝑎𝑎𝑏𝑏 in it

 𝐿 = 𝑤 | 𝑤 contains an odd number of 𝑎′s and an odd

18

back to the chomsky

hierarchy

 from the chomsky hierarchy

 type 3 – regular

 type 0 – recursively enumerable

 a finite state machine is basically just a turing machine

that does not write to the tape and always moves one

step to the right

 regular languages are therefore a subset of recursively

enumerable languages

19

and now something more

advanced

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 is of the form 𝑎𝑛𝑏𝑛 with 𝑛 ≥ 0

 𝐿 = 𝑤 | 𝑤 is of the form 𝑎𝑛𝑏𝑛𝑐𝑛 with 𝑛 ≥ 0

 since these languages are not regular, regular

languages are a proper subest of recursively

enumerable languages

20

describing turing machines

on a higher level

 describing the controlling finite automaton is a rather

dull and inconvenient task

 equivalent to programming languages, we can

introduce a layer of abstraction by describing an

algorithm on a higher level

 there is no specific notion of such languages for turing

machines

 a higher level description is therefore sufficient, once it is

convincing enough

21

let us practice this higher

level descriptions

 Σ = 𝑎, 𝑏

 𝐿 = 𝑤 | 𝑤 contains an equal number of 𝑎's and 𝑏's

 𝐿 = 𝑤 | 𝑤 contains twice as many 𝑎′s as 𝑏′s

 𝐿 = 𝑤 | 𝑤 does not contain as many 𝑎′s as 𝑏′s

22

a possible solution for the first

language

1. start by shifting everything on the tape one cell to the right and
placing a special symbol into the leftmost cell

 we are therefore able to detect the lower bound of our tape

2. scan for an 𝑎 from the lower to the upper bound of the tape

 if an 𝑎 has been found, cross it out and go to 3

 if no 𝑎 has been found, go to 4

3. scan for a 𝑏 from the lower to the upper bound of the tape

 if a 𝑏 has been found, cross it out and go to 2

 If no 𝑏 has been found, reject

4. scan for a 𝑏 from the lower to the upper bound of the tape

 if a 𝑏 has been found, fail

 if no 𝑏 has been found, accept

23

definition – configurations

 a configuration represents the entire state of a turing

machine – it is therefore basically a snapshot

 what we have to store in a configuration

 the content of the tape

 the state of the controlling finite automaton

 the current position of the head

 this can be done with a single string, where the state is

simply inserted in front of the currently located cell

 𝑎 𝑏 𝑞
7
𝑐 𝑑

24

note: obviously, 𝑄 and Γ have to be disjoint

definition – computation

histories

 a sequence of configurations represent a

computation history, if

 the sequence starts with the start configuration

 there were only legal transitions between two

consecutive configurations

 the sequence ends with an accepting or rejecting

configuration

 note that this model of computation is very similar to

the computational model of finite automata

25

extending the chomsky

hierarchy

 languages that are recursive / decidable

 given an input string, the turing machine will always halt

 it will therefore either end in an accepting or rejecting

state and therefore accept or reject the input string

 languages that are recursively enumerable / turing

recognizable / semi decidable

 given an input string that is in the language of the turing

machine, the turing machine will always halt and accept

 given an input string that is not in the language, the turing

machine will either reject or loop

26

extending the chomsky

hierarchy

 languages that are not recursively enumerable / not

turing recognizable

 the turing machine does not even reliably halt for input

strings that are within the language of the turing machine

 it is quite hard to imagine such a language, but proving

its existance is rather easy – we are going to do this in a

moment

27

note: semi decidable is already not decidable

extending the chomsky

hierarchy

28

source: http://www.cs.virginia.edu/~robins/cs6160/

the acceptance problem

for turing machine

 given a turing machine, is it possible to decide

whether this turing machine halts on a certain input

 of course not, otherwise every turing machine could be

converted into one that always halts

 in order to prove that it is recognizable, we have to

present a turing machine that recognizes this language

 this can easily be done by simply emulating this turing

machine on our turing machine

 this language is commonly defined and used

 𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 is a turing machine and 𝑀 accepts 𝑤

29

the acceptance problem

for turing machine

 since we know that 𝐴𝑇𝑀 is turing recognizable, 𝐴𝑇𝑀 has

to be not turing recognizable

 otherwise we could simultaneously start the turing

machine for both languages on a given input string

 per definition of turing recognizable languages, one of

them would have to halt

 we could therefore decide 𝐴𝑇𝑀

30

variants of turing machines

 as already mentioned, there are variations within the
definition of touring machines from textboox to
textbook – these variants are all equivalent

 what about a tape that has no lower bound

 every time we detect that we are at the leftmost cell and
want to go further left, we shift the content of the tape to
the right

 but how do we detect the left hand side of the tape

 we initially shift the whole tape at the beginning of the
computation to the right and place a special symbol into
the leftmost cell

31

variants of turing machines

 what about a multitape turing machine – the transition

function therefore has to be extended

 it is quite exhausting to prove this

 the tapes are concatenated and stored on a single

tape, separated by a special symbol

 the position of each head in each subtape is preserved

through a marking mechanism of symbols

 in order to perform a transition, all the subtapes have to

be scanned and updated, once the appropriate

transition has been found

 whenever a head moves off the rightmost cell of a

subtape, the following tapes have to be shifted

32

note: i do not expect you to be able to reproduce this proof

turing completeness

 the turing machine is the most universal automaton

that we know so far

 if a computational model is able to simulate a turing

machine, this model is turing complete

 this is quite easy to achive though, since 𝑚𝑜𝑣 for

example is already turing complete

33

source: www.cl.cam.ac.uk/~sd601/papers/mov.pdf

nondeterministic turing

machines

 𝑀 = 𝑄, Σ, Γ, 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡, 𝑞𝑟𝑒𝑗𝑒𝑐𝑡

 𝑄 – a set of states – finite

 Σ – the input alphabet – finite with ⊔ ∉ Σ and ε ∉ Σ

 Γ – the tape alphabet – finite with ⊔ ∈ Γ and Σ ⊆ Γ

 𝛿 – a transition function – 𝑄 × Γ → 𝑃 𝑄 × Γ × ℒ,ℛ

 𝑞0 – a start state – with 𝑞0 ∈ 𝑄

 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 – a accept state – with 𝑞𝑎𝑐𝑐 ∈ 𝑄 and 𝑞𝑎𝑐𝑐 ≠ 𝑞𝑟𝑒𝑗

 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 – a reject state – with 𝑞𝑟𝑒𝑗 ∈ 𝑄 and 𝑞𝑟𝑒𝑗 ≠ 𝑞𝑎𝑐𝑐

34

note: only the transition function has changed

configurations and

computation histories

 at any given point, a configuration of a

nondeterministic turing machine could have more

than one successor

 the computation historie is therefore not necessarily a

sequence of configurations any more

 it instead resembles a tree

 this tree therefore contains all possible choices that are

implied through the nondeterminisim

35

possible outcomes of a

computation

 the nondeterministic turing machine can either

 halt and accept, if any branch of the computation

history accepts

 halt and reject, if all branches of the computation history

reject

 loop, if no accepting configuration has occured that and

there are still ongoing branches within the history

 note, that these three possibilities are the same as for

deterministic turing machines – they are just defined

36

is a nondeterministic turing

machine more powerful

 of course not, otherwise we would have a problem

with the definition of the turing completeness

 we can simulate a nondeterministic turing machine on a

deterministic one, by emulating the computational

history

 we therefore have to do a state based search

 a depth first search wo be simple, but would fail to

perform the task, because we could end up in an branch

that never halts

 a breath first search has therefore been done, which is

rather complex – the usual proof for example already

requires a deterministic turing machine with three tapes

37

note: i do not expect you to be able to reproduce this proof

i hope you had fun, at

least i had
Simon Niklaus

38

