Turing Machines

Simon Niklaus

recap - alphabets, strings and languages

- an alphabet defines a set of symbols
- $\Sigma=\{a, b, c\}$
- a string is a sequence of symbols
- accbcca
- a language is a set of strings
- $\{a, b, c, a b, a c, b a\}$

recap - finite automata

- what is a finite state machine again?

- such an automaton can be used, in order to
- generate / accept strings
- generate / recognize languages

recap - DFAs

- $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q - a set of states - finite
- Σ - the alphabet / a set of symbols - finite with $\varepsilon \notin \Sigma$
- δ - a transition function $-Q \times \Sigma \rightarrow Q$
- q_{0} - a starting state - with $q_{0} \in Q$
- F - a set of accepting / final states - with $F \subseteq Q$

recap - NFAs

- $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
- Q - a set of states - finite
- Σ - the alphabet / a set of symbols - finite with $\varepsilon \notin \Sigma$
- δ - a transition function $-Q \times \Sigma_{\varepsilon} \rightarrow P(Q)$
- q_{0} - a starting state - with $q_{0} \in Q$
- F - a set of accepting / final states - with $F \subseteq Q$
- note, that the only difference to DFAs lies within the transition function

recap - exercises

- $\Sigma=\{a, b\}$
- $L=\{w \mid w=a b a\}$
- $L=\{w \mid w=a b a$ or $w=a a a\}$
- $L=\{w \mid w$ does contain aba in it $\}$
- $L=\{w \mid w$ does not contain aabb in it $\}$
- $L=\{w \mid w$ contains an odd number of a 's and an odd

recap - exercises

- the last exercise is not a regular language - to prove this, the pumping lemma for regular languages can be applied
- it is sufficient for us though, to realize that finite automata do not have memory and the given language would require some sort of memory

chomsky hierarchy

- type 3 - regular
- finite state automata
- no memory / only a history, finite
- $\left\{w \mid w\right.$ is of the form $a^{n} b$ with $\left.n \geq 0\right\}$
- type 2 - context-free
- nondeterministic pushdown automata
- stack, infinite
- $\left\{w \mid w\right.$ is of the form $a^{n} b^{n}$ with $\left.n \geq 0\right\}$

chomsky hierarchy

- type 1 - context-sensitive
- linear bounded nondeterministic turing machines
- tape, linear bounded
- $\left\{w \mid w\right.$ is of the form $a^{n} b^{n} c^{n}$ with $\left.n \geq 0\right\}$
- type 0 - recursively enumerable
- turing machines
- tape, infinite
- $\{w \mid w$ is a prime number $\}$

an outline to start with

- there are variations within the definition from textbook to textkbook - these variations are all equivalent

characteristics of the finite automaton

- we are going to start with deterministic turing machines - the controlling finite automaton is therefore chosen to be deterministic
- there is only one accept state and furthermore an additional reject state - the latter one is similar to a dead state
- both of these states take effect immediately
- this property will be useful with nondeterminism
- the head of the turing machine initially points at the leftmost cell

characteristics ofthe tape

- it is infinite, even though it has a lower bound - every unused cell contains the blank symbol -
- we can use each transition of the controlling finite automaton to read and write to the tape - the head can furthermore be moved to the left or to the right
- when working with finite state machines, we implicitly had an input string that we have read successively
- turing machines do not have an input stream
- we therefore place the input string on the tape initially

uses of turing machines

- we used finite automata in order to recognize languages
- turing machines can be used for the same task
- they are capable to recognize a larger set of langauges though
- we can however access and interpret the content of the tape after the turing machine has finished
- a turing machine can therefore be used to do actual computations
- the output is simply placed on the tape, from which it can be retrieved afterwards

the formal description of a turing machine as a 7 tupel

- $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$
- Q - a set of states - finite
- Σ - the input alphabet - finite with $\sqcup \notin \Sigma$ and $\varepsilon \notin \Sigma$
- Γ - the tape alphabet - finite with $\sqcup \in \Gamma$ and $\Sigma \subset \Gamma$
- δ - a transition function $-Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathcal{L}, \mathcal{R}\}$
- q_{0} - a start state - with $q_{0} \in Q$
- $q_{\text {accept }}$ - a accept state - with $q_{a c c} \in Q$ and $q_{a c c} \neq q_{r e j}$
- $q_{\text {reject }}$ - a reject state - with $q_{r e j} \in Q$ and $q_{r e j} \neq q_{a c c}$

the new transition function

- given a current state of the controlling finite automaton, we read a symbol from the current cell
- we then write a symbol to the same cell and move either left or right afterwards

- what if we are on the left side of the tape and move the head left again - the head will stay at the leftmost cell

the new transition function

- since the definition forces us to always write a symbol to the tape, how do we leave a cell unchanged - we basically write the same symbol again

- since this is a quite common problem, we use a shorthand for that and simply omit the symbol on the right hand side of the transition

possible outcomes of a computation

- the turing machine can either
- halt and accept
- halt and reject
- loop
- note that it is impossible to loop with a finite state machine on a given input string, because strings are finite in length
- you might ask why a turing machine might loop, but this is actually an important property, that enables entirely new possibilities

let us do some obvious exercises to start with

- $\Sigma=\{a, b\}$
- $L=\{w \mid w=a b a\}$
- $L=\{w \mid w=a b a$ or $w=a a a\}$
- $L=\{w \mid w$ does contain aba in it $\}$
- $L=\{w \mid w$ does not contain $a a b b$ in it $\}$
- $L=\left\{w \mid w\right.$ contains an odd number of $a^{\prime} s$ and an odd

back to the chomsky hierarchy

- from the chomsky hierarchy
- type 3 - regular
- type 0 - recursively enumerable
- a finite state machine is basically just a turing machine that does not write to the tape and always moves one step to the right
- regular languages are therefore a subset of recursively enumerable languages

and now something more advanced

- $\Sigma=\{a, b\}$
- $L=\left\{w \mid w\right.$ is of the form $a^{n} b^{n}$ with $\left.n \geq 0\right\}$
- $L=\left\{w \mid w\right.$ is of the form $a^{n} b^{n} c^{n}$ with $\left.n \geq 0\right\}$
- since these languages are not regular, regular languages are a proper subest of recursively enumerable languages

describing turing machines on a higher level

- describing the controlling finite automaton is a rather dull and inconvenient task
- equivalent to programming languages, we can introduce a layer of abstraction by describing an algorithm on a higher level
- there is no specific notion of such languages for turing machines
- a higher level description is therefore sufficient, once it is convincing enough

let us practice this higher level descriptions

- $\Sigma=\{a, b\}$
- $L=\left\{w \mid w\right.$ contains an equal number of a^{\prime} 's and $\left.b^{\prime} s\right\}$
- $L=\left\{w \mid w\right.$ contains twice as many a 's as $\left.b^{\prime} s\right\}$
- $L=\left\{w \mid w\right.$ does not contain as many $a^{\prime} s$ as $\left.b^{\prime} s\right\}$

a possible solution for the first language

1. start by shifting everything on the tape one cell to the right and placing a special symbol into the leftmost cell

- we are therefore able to detect the lower bound of our tape

2. scan for an a from the lower to the upper bound of the tape

- if an a has been found, cross it out and go to 3
- if no a has been found, go to 4

3. scan for $a b$ from the lower to the upper bound of the tape

- if a b has been found, cross it out and go to 2
- If no b has been found, rejec \dagger

4. scan for a b from the lower to the upper bound of the tape

- if a b has been found, fail
- if no b has been found, accept

definition - configurations

- a configuration represents the entire state of a turing machine - it is therefore basically a snapshot
- what we have to store in a configuration
- the content of the tape
- the state of the controlling finite automaton
- the current position of the head
- this can be done with a single string, where the state is simply inserted in front of the currently located cell
- $a b q_{7} c d$

definition - computation histories

- a sequence of configurations represent a computation history, if
- the sequence starts with the start configuration
- there were only legal transitions between two consecutive configurations
- the sequence ends with an accepting or rejecting configuration
- note that this model of computation is very similar to the computational model of finite automata

extending the chomsky hierarchy

- languages that are recursive / decidable
- given an input string, the turing machine will always halt
- it will therefore either end in an accepting or rejecting state and therefore accept or reject the input string
- languages that are recursively enumerable / turing recognizable / semi decidable
- given an input string that is in the language of the turing machine, the turing machine will always halt and accept
- given an input string that is not in the language, the turing machine will either reject or loop

extending the chomsky hierarchy

- languages that are not recursively enumerable / not turing recognizable
- the turing machine does not even reliably halt for input strings that are within the language of the turing machine
- it is quite hard to imagine such a language, but proving its existance is rather easy - we are going to do this in a moment

extending the chomsky hierarchy

the acceptance problem for turing machine

- given a turing machine, is it possible to decide whether this turing machine halts on a certain input
- of course not, otherwise every turing machine could be converted into one that always halts
- in order to prove that it is recognizable, we have to present a turing machine that recognizes this language
- this can easily be done by simply emulating this turing machine on our turing machine
- this language is commonly defined and used
- $A_{T M}=\{\langle M, w\rangle \mid M$ is a turing machine and M accepts $w\}$

the acceptance problem for turing machine

- since we know that $A_{T M}$ is turing recognizable, $\overline{A_{T M}}$ has to be not turing recognizable
- otherwise we could simultaneously start the turing machine for both languages on a given input string
- per definition of turing recognizable languages, one of them would have to halt
- we could therefore decide $A_{T M}$

variants of turing machines

- as already mentioned, there are variations within the definition of touring machines from textboox to textbook - these variants are all equivalent
- what about a tape that has no lower bound
- every time we detect that we are at the leftmost cell and want to go further left, we shift the content of the tape to the right
- but how do we detect the left hand side of the tape
- we initially shift the whole tape at the beginning of the computation to the right and place a special symbol into the leftmost cell

variants of turing machines

- what about a multitape turing machine - the transition function therefore has to be extended
- it is quite exhausting to prove this
- the tapes are concatenated and stored on a single tape, separated by a special symbol
- the position of each head in each subtape is preserved through a marking mechanism of symbols
- in order to perform a transition, all the subtapes have to be scanned and updated, once the appropriate transition has been found
- whenever a head moves off the rightmost cell of a subtape, the following tapes have to be shifted

turing completeness

- the turing machine is the most universal automaton that we know so far
- if a computational model is able to simulate a turing machine, this model is turing complete
- this is quite easy to achive though, since mov for example is already turing complete

nondeterministic turing machines

- $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$
- Q - a set of states - finite
- Σ - the input alphabet - finite with $\sqcup \notin \Sigma$ and $\varepsilon \notin \Sigma$
- Γ - the tape alphabet - finite with $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
- δ - a transition function $-Q \times \Gamma \rightarrow P(Q \times \Gamma \times\{\mathcal{L}, \mathcal{R}\})$
- q_{0} - a start state - with $q_{0} \in Q$
- $q_{\text {accept }}$ - a accept state - with $q_{a c c} \in Q$ and $q_{a c c} \neq q_{r e j}$
- $q_{\text {reject }}$ - a reject state - with $q_{r e j} \in Q$ and $q_{r e j} \neq q_{\text {acc }}$

configurations and computation histories

- at any given point, a configuration of a nondeterministic turing machine could have more than one successor
- the computation historie is therefore not necessarily a sequence of configurations any more
- it instead resembles a tree
- this tree therefore contains all possible choices that are implied through the nondeterminisim

possible outcomes of a computation

- the nondeterministic turing machine can either
- halt and accept, if any branch of the computation history accepts
- halt and reject, if all branches of the computation history reject
- loop, if no accepting configuration has occured that and there are still ongoing branches within the history
- note, that these three possibilities are the same as for deterministic turing machines - they are just defined

is a nondeterministic turing machine more powerful

- of course not, otherwise we would have a problem with the definition of the turing completeness
- we can simulate a nondeterministic turing machine on a deterministic one, by emulating the computational history
- we therefore have to do a state based search
- a depth first search wo be simple, but would fail to perform the task, because we could end up in an branch that never halts
- a breath first search has therefore been done, which is rather complex - the usual proof for example already requires a deterministic turing machine with three tapes
i hope you had fun, at least i had

Simon Niklaus

