
Computer Systems Programming

Slides by Wu Chang Feng

This course gives you an overview of how computer
systems are organized

This course provides skills and knowledge of C and
assembly-level programming

About the course

Course information

Web site
 http://moodle.svcs.cs.pdx.edu/cs201
 Course objectives
 Updated course schedule
 Information about instructor, TA, office hours, textbooks
 Information about homeworks and submission instructions
 All announcements, hints, e-mail, (most) homework submissions,

class discussion occur here
 Pay special attention to the Forum, your most powerful resource

Textbooks

Required
Randal E. Bryant and David R. O’Hallaron,

“Computer Systems: A Programmer’s
Perspective”, Prentice Hall 2015, 3rd edition.

csapp.cs.cmu.edu
All slide materials in this class are based on

material provided by Bryant and O’Hallaron

Recommended
Brian Kernighan and Dennis Ritchie,

“The C Programming Language, Second
Edition”, Prentice Hall, 1988

Some parts of the course rely on the C99
standard

Exams

2 exams (midterm and final)
Closed book
Cosed notes
No electronics of any kind
Taken from problems in the textbook and in class (See

lecture slides and web site for list of problems)

Activation and access
 Instructions on course web page

Activate your account in person at CAT front desk
linuxlab.cs.pdx.edu

» Linux systems in FAB 88-09, 88-10
» Where homework assignments will be run

Login remotely or in person (Basement of EB)
ssh user@linuxlab.cs.pdx.edu or user@linux.cs.pdx.edu
Putty

» http://www.chiark.greenend.org.uk/~sgtatham/putty
Cygwin ssh

» http://www.cygwin.com

Accounts

Linux environment

All programs must run on the CS Linux Lab machines
ssh user@linuxlab.cs.pdx.edu
Those new to Linux may find this CTF helpful

http://overthewire.org/wargames/bandit/
Linux commands to learn

Filesystem
 ls, cd, mkdir, rm

An editor (pick one)
 vim, emacs, nano, gedit, eclipse

Homework tools
gcc (GNU compiler)
gdb (GNU debugger)
make (Simple code building tool)
zip (Archiver, compressor)

Assignments

Reading assignments posted with each lecture
Programming assignments

See web site for grading breakdown

Homework assigments due at start of class on due date
Follow submission instructions on home page carefully,

especially for programming assignments.
Late policy: late assignments will most likely not be

accepted

Assignment 1

The assignment is on course web site
Makefile required
TA/grader will run and read your program

• Poorly written code, improperly formatted code, and an
absence of comments will prevent you from getting full credit

Academic integrity

Policy
 Automatic failing grade assignment given
 Failing an assignment is grounds for failing course
 Departmental guidelines available in CS office

What is not cheating?
 Discussing the design for a program is OK.
 Helping each other orally (not in writing) is OK.
 Using anything out of the textbook or my slides is OK.
 Copying code “snippets”, templates for library calls, or

declarations from a reference book or header files are OK
What is cheating?

 Copying code verbatim without attribution
Source-code plagiarism tools

 Copying someone’s answer or letting someone copy your answer

Help

CS Tutors
Instructor and TA office hours
Discussion forum

Attendance and participation

Mandatory and enforced
There will be in-class assignments
Submit answers each lecture that problems are given
Allowed 3 absences (for any reason) before deduction
Notify the TA of any absences in advance

C and assembly (motivation)

Why C?

Used prevalently
Operating systems (e.g. Windows, Linux, FreeBSD/OS X)
Web servers (apache)
Web browsers (firefox, chrome)
Mail servers (sendmail, postfix, uw-imap)
DNS servers (bind)
Video games (any FPS)
Graphics card programming (OpenCL GPGPU programming)

Why?
Performance
Portability
Wealth of programmers

Compared to assembly programming
Abstracts out hardware (i.e. registers, memory addresses) to

make code portable and easier to write
Provides variables, functions, arrays, complex arithmetic

and boolean expressions

Compared to other high-level languages
Maps almost directly into hardware instructions making

code potentially more efficient
Provides minimal set of abstractions compared to other HLLs
HLLs make programming simpler at the expense of efficiency

Why C?

Why C?

Used prevalently
2/2014

Why C?
Heartbleed (4/2014)

Why assembly?

Learn how programs map onto underlying hardware
Allows programmers to write efficient code
Allows one to identify security problems caused by CPU

architecture

Perform platform-specific tasks
Access and manipulate hardware-specific registers
Utilize latest CPU instructions
 Interface with hardware devices

Reverse-engineer unknown binary code
 Identify what viruses, spyware, rootkits, and other malware

are doing
Understand how cheating in on-line games work

8/2014

Why assembly?

FBI Tor Exploit (8/2013)

Why assembly?

Shellshock

Why assembly?

C

The C Programming Language

One of many programming languages
C is an imperative, procedural programming language
Imperative

 Computation consisting of statements that change program state
 Language makes explicit references to state (i.e. variables)

Procedural
 Computation broken into modular components (“procedures” or

“functions”) that can be called from any point
Contrast to declarative programming languages

 Describes what something is like, rather than how to create it
 Implementation left to other components
 Examples?

The C Programming Language

Simpler than C++, C#, Java
 No support for

Objects
Managed memory (e.g. garbage collection)
Array bounds checking
Non-scalar operations*

 Simple support for
Typing
Structures

 Basic utility functions supplied by libraries
 libc, libpthread, libm

 Low-level, direct access to machine memory (pointers)
 Easier to write bugs, harder to write programs, typically faster

Looks better on a resume
C based on updates to ANSI-C standard

 Current version: C99

Compilation down to machine code as in C++
Compiled, assembled, linked via gcc

Compared to interpreted languages…
Perl/Python

Commands executed by run-time interpreter
Interpreter runs natively

Java
Compilation to virtual machine “byte code”
Byte code interpreted by virtual machine software
Virtual machine runs natively

The C Programming Language

Named using letters, numbers, some special
characters
By convention, not all capitals

Must be declared before use
Contrast to typical dynamically typed scripting languages

(Perl, Python, PHP, JavaScript)
C is statically typed (for the most part)

Variable declaration format
<type> <variable_name> , optional initialization using

assignment operator (=)
C statements end with ‘;’
Examples

int foo = 34;
float ff = 34.99;

C variables

Integer data types and sizes

char – single byte integer
8-bit character, hence the name
Strings implemented as arrays of char and referenced via a

pointer to the first char of the array
short – short integer

16-bit (2 bytes) not used much
int – integer

32-bit (4 bytes) used in IA32
long – long integer

64-bit (8 bytes) in x64 (x86-64)

float – single precision floating point
32-bit (4 bytes)

double – double precision floating point
64 bit (8 bytes)

Floating point types and sizes

Data Type Ranges for x86-64

Type Size Range
char 1 -128 to 127
short 2 -32,768 to 32,767
int 4 -2,147,483,648 to 2,147,483,647
long 8 -263 to 263-1

(-9,223,372,036,854,775,808 to …)

float 4 3.4E+/-38
double 8 1.7E+/-308

Integer literals
Decimal constants directly expressed (1234, 512)
Hexadecimal constants preceded by ‘0x’ (0xFE , 0xab78)

Character constants
Single quotes to denote (‘a’)
Corresponds to ASCII numeric value of character ‘a’

String Literals
Double quotes to denote (“I am a string”)
“” is the empty string

Constants

char foo[80];
 An array of 80 characters (stored contiguously in memory)
 sizeof(foo)
 = 80 × sizeof(char)
– = 80 × 1 = 80 bytes

int bar[40];
 An array of 40 integers (stored contiguously in memory)
 sizeof(bar)
 = 40 × sizeof(int)
– = 40 × 4 = 160 bytes

Arrays

Structures

Aggregate data

struct person
{
 char* name;
 int age;
}; /* <== DO NOT FORGET the semicolon */

struct person bovik;
bovik.name = "Harry Bovik";
bovik.age = 25;

#include <stdio.h>
int main(int argc, char* argv[])
{
 /* print a greeting */
 printf(“Hello world!\n");
 return 0;
}

$ gcc -o hello hello.c
$./hello
Hello world!
$

Simple C program

#include <stdio.h>
 Include the contents of the file stdio.h

Case sensitive – lower case only
No semicolon at the end of line

int main(…)
The OS calls this function when the program starts running.

printf(format_string, arg1, …)
 Call function from libc library
 Prints out a string, specified by the format string and the

arguments.

Breaking down the code

main has two arguments from the command line
int main(int argc, char* argv[])
argc

 Number of arguments (including program name)
argv

 Pointer to an array of string pointers
argv[0]: = program name
argv[1]: = first argument
argv[argc-1]: last argument
 Example: find . –print

– argc = 3
– argv[0] = “find”
– argv[1] = “.”
– argv[2] = “-print”

Passing arguments

C operators

Relational operators (return 0 or 1)
<, >, <=, >=, ==, !=, &&, ||, !

Bit-wise boolean operators
&, |, ~ , ^

Arithmetic operators
+, - , *, /, % (modulus)

int foo = 30;
int bar = 20;
foo = foo + bar;

Equivalent shortened form
foo += bar;

Comes in prefix and postfix flavors
i++, ++i
i--, --i

Makes a difference in evaluating complex statements
A major source of bugs
Prefix: increment happens before evaluation
Postfix: increment happens after evaluation

When the actual increment/decrement occurs is
important to know about
 Is “i++*2” the same as “++i*2” ?

Increment and Decrement

Function calls (static)

void print_ints(int a, int b) {
 printf(“%d %d\n”,a,b);
}

int main(int argc, char* argv[]) {
int i=3;
int j=4;
print_ints(i,j);

}

Calls to functions typically static (resolved at compile-
time)

Expression delineated by ()
if (x == 4)

y = 3; /* sets y to 3 if x is 4 */
Code blocks delineated by curly braces { }

For blocks consisting of more than one C statement
Examples:
if () { } else { }
while () { }
do { } while ();
for(i=1; i <= 100; i++) { }
switch () {case 1: … }

C control flow

Keywords and their semantics
continue; control passed to next iteration of do/for/while
break; pass control out of code block
return; exits function immediately and returns value

specified

Other control-flow statements

#include <stdio.h>

int main(int argc, char* argv[])
{
 int i;
 printf("%d arguments\n", argc);
 for(i = 0; i < argc; i++)
 printf(" %d: %s\n", i, argv[i]);
 return 0;
}

Example: Command Line Arguments

$./cmdline The Class That Gives CS Its Zip
8 arguments
 0: ./cmdline
 1: The
 2: Class
 3: That
 4: Gives
 5: CS
 6: Its
 7: Zip
$

Example: Command Line Arguments

C quirks

Pointers

Unique to C
 Variable that holds an address in memory.
 Address contains another variable.
 All pointers are 8 bytes (64-bits) for x86-64

Every pointer has a type
 Type of data at the address (char, int, long, float,
double)

Declared via the ‘*’ operator in C variable declarations
Assigned via the ‘&’ operator

 Valid on all “lvalues”
 Anything that can appear on the left-hand side of an

assignment

Dereferenced via the ‘*’ operator in C statements
 Result is a value having type associated with pointer

Pointer operators

Pointer Assignment / Dereference

Dereferencing pointers
 Returns the data that is stored in the memory location

specified by the pointer
 Type determines what is returned when “dereferenced”
 Example

int x = 1, y = 2;
int* ip = &x;

y = *ip; // y is now 1
*ip = 0; // x is now 0

Dereferencing uninitialized pointers:
 What happens?

int* ip;
*ip = 3;

Segmentation fault

float f; /* data variable */
float *f_addr; /* pointer variable */

f_addr = &f; /* & = address operator */

? ?

f f_addr

4300 4304

? 4300

f f_addr

4300 4304

Using Pointers

Using Pointers

f_addr = 3.2;/ indirection operator */

float g = *f_addr;/* indirection: g is now 3.2 */

f f_addr

4300 4304

3.2 4300

f f_addr

4300 4304

3.2 4300 3.2

g

430C

Using Pointers

f = 1.3; /* but g is still 3.2 */

f f_addr

4300 4304

1.3 4300 3.2

g

430C

Pointers and arrays in C

Assume array z[10]
 z[i] returns ith element of array z
 &z[i] returns the address of the ith element of array z
 z alone returns address the array begins at or the address of

the 0th element of array z (&z[0])
int* ip;
int z[10];
ip = z; /* equivalent to ip = &z[0]; */

Pointers and arrays

Pointer arithmetic done based on type of pointer
char* cp1;
int* ip1;
cp1++; // Increments address by 1
ip1++; // Increments address by 4

Often used when sequencing arrays
int* ip;
int z[10];
ip = z;
ip += 3;
*ip = 100

How much larger is ip than z?
Which element of z is set to 100?

12

z[3] == 100

Function call parameters

Function arguments are passed “by value”.
What is “pass by value”?

 The called function is given a copy of the arguments.
What does this imply?

 The called function can’t alter a variable in the caller
function, but its private copy.

NOTE: The “value” of some things is their address.
 Arrays, strings and functions (advanced topic), but not

structures.

Example 1: swap_1

void swap_1(int a, int b)
{
 int temp;
 temp = a;
 a = b;
 b = temp;
}

Q: Let x=3, y=4,
 after

swap_1(x,y);
 x =? y=?

A1: x=4; y=3;

A2: x=3; y=4;

Example 2: swap_2

void swap_2(int *a, int *b)
{
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
}

Q: Let x=3, y=4,
 after

swap_2(&x,&y);
 x =? y=?

A1: x=3; y=4;

A2: x=4; y=3;

Call by value vs. reference in C

Call by reference implemented via pointer passing
void swap(int* px, int* py) {
int tmp;
tmp = *px;
*px = *py;
*py = tmp;

}
 Swaps the values of the variables x and y if px is &x and py is &y
 Uses integer pointers instead of integers

Otherwise, call by value...
void swap(int x, int y) {

int tmp;
tmp = x;
x = y;
y = tmp;

}

In C, assignment is an expression
“x = 4” has the value 4

if (x == 4)
y = 3; /* sets y to 3 if x is 4 */

if (x = 4)
y = 3; /* always sets y to 3 */

while ((c=getchar()) != EOF)

Assignments and expressions

https://freedom-to-tinker.com/blog/felten/the-linux-backdoor-attempt-of-2003/

Tricky expressions

Free Your Mind

Fridays at 1:30-3pm in FAB145
starting October 2nd

Play security games with the PSU Capture-The-Flag club
Vulnerabilities, reverse engineering, exploits!

ctf@cs.pdx.edu

Extra

char amsg[] = “This is a test”; This is a test\0

Used for static arrays
Square brackets used to denote arrays
Symbol that points to a fixed location in memory

Can change characters in string (amsg[3] = 'x';)
Can not reassign amsg to point elsewhere (i.e. amsg = p)

Constant pointers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

