
Introduction to Z

Bart Massey

January 7, 2016

Values

What is a value?

I Mathematical “value” is fundamental

I Primitive things like numbers, symbols

I Composite things like sets

I Values can be named.

I Naming is not the same as assignment!

Constraints

I A constraint partially specifies values

I e.g a ∈ N, a > 5 tells us something about a, but not all

I a = 5 is also a constraint, so naming is constraining

I We particularly care about constraints between inputs,
outputs, and states

Types

You’ve worked with types your whole career. But what is a type,
anyway?
A type is a collection of values. It denotes a membership constraint
on a value. So a ∈ N and a : N are equivalent statements.

Finite State Machines

A state associates values with a time (sort of).
A finite state machine has a finite set of states, with well-specified
transitions between them. It usually has a start state and some
accepting states.

Parameters

We separate the system under study from the “real world”.
External inputs and outputs drive state machines, and outputs are
conditioned on inputs.

Sets

A set is a collection of items. (Items can be anything.)
A set is an unordered collection
A set has no duplicate elements

I Platonic ideals of things

I Convenient in a surprising number of places

I Can use ”property functions” to deal with duplication

May be ”typed”: All elements of the set are the same ”kind”

Set Descriptions

Set displays: {0, 1, 2, 3}
Set constructors: {x : N | x < 4}
Informal descriptions with dots: {0 . . 3}
Construction using set operations:

I Union:
A ∪ B = {e | e ∈ A ∨ e ∈ B}

I Intersection:

A ∩ B = {e | e ∈ A ∧ e ∈ B}

Views Of Z

I Formalized mathematical notation for
I automated typechecking
I automated reasoning
I easy reading

I Precise description for
I checking consistency
I checking completeness
I organizing model

Z Notation

Z consists of names, values, and constraints organized into
paragraphs. By convention, all-caps names are types, names
ending in ’?’ are inputs, names ending in ’ !’ are outputs, and
names ending with a single-quote are “after-states”.

Z Paragraphs

I Paragraph is Z basic unit:
I Declarations give interface + types
I Constraints give relation between vars

I Constraint part may be omitted

Z Top-Level Paragraphs

Some parts of Z description are global, e.g.

I Set existence

[PLAYER]

I Free types

OBJ ::= rock | scissors | paper

I Constraints

#PLAYER = 2

Z Schema Definitions

A schema defines and constrains state, e.g.

I Definition

Referee
referee : OBJ × OBJ → VAL

I Definition with constraints

Beats
beats : P(OBJ × OBJ)

beats = {(rock, scissors),
(scissors, paper),
(paper , rock)}

Z and State

A Z schema describes a state. It is essentially a node in a state
machine.
A Z schema can also describe a state transition: an edge in a state
machine. The “before” and “after” (un-primed and primed) values
are constrained with respect to each other.

Z Is Not Stand-alone

Every Z paragraph should be surrounded by English. This is nice,
because it makes it possible for mere mortals to understand the Z.
It is also necessary to provide a connection between the Z and
reality.

	Underlying Mechanics
	Set Basics
	Z Schemata

