
This is the BirthdayBook specification, from Spivey [1].

[NAME , DATE]

The BirthdayBook schema defines the state space of the birthday book sys-
tem.

BirthdayBook
known : PNAME
birthday : NAME 7→DATE

known = dom birthday

This InitBirthdayBook specifies the initial state of the birthday book system.
It does not say explicitly that birthday ′ is empty, but that is implicit, because
its domain is empty.

InitBirthdayBook
BirthdayBook ′

known ′ = {}

Next we have several operation schemas to define the normal (non-error)
behaviour of the system.

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? 6∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

1

Remind
ΞBirthdayBook
today? : DATE
cards! : PNAME

cards! = {n : known | birthday(n) = today?}

Now we strengthen the specification by adding error handling.

REPORT ::= ok | already known | not known

First we define auxiliary schemas that capture various success and error
cases.

Success
result ! : REPORT

result ! = ok

AlreadyKnown
ΞBirthdayBook
name? : NAME
result ! : REPORT

name? ∈ known
result ! = already known

NotKnown
ΞBirthdayBook
name? : NAME
result ! : REPORT

name? 6∈ known
result ! = not known

Finally, we define robust versions of all the operations by specifying how
errors are handled.

RAddBirthday == (AddBirthday ∧ Success) ∨ AlreadyKnown
RFindBirthday == (FindBirthday ∧ Success) ∨ NotKnown
RRemind == Remind ∧ Success

2

References

[1] J. Michael Spivey. The Z Notation: A Reference Manual. International
Series in Computer Science. Prentice-Hall International (UK) Ltd, second
edition, 1992.

3

