This is the BirthdayBook specification, from Spivey [1].

[NAME, DATE)

The BirthdayBook schema defines the state space of the birthday book sys-
tem.

BirthdayBook
known : P NAME
birthday : NAME + DATE

known = dom birthday

This InitBirthdayBook specifies the initial state of the birthday book system.
It does not say explicitly that birthday’ is empty, but that is implicit, because
its domain is empty.

__InitBirthdayBook
BirthdayBook'

known’ = {}

Next we have several operation schemas to define the normal (non-error)
behaviour of the system.

__AddBirthday
A BirthdayBook
name? : NAME
date? : DATE

name? & known
birthday' = birthday U {name? — date?}

__ FindBirthday
ZBirthdayBook
name? : NAME
date! : DATE

name? € known
date! = birthday(name?)

__ Remind
EBirthdayBook
today? : DATE
cards! : P NAME

cards! = {n : known | birthday(n) = today?}

Now we strengthen the specification by adding error handling.

REPORT ::= ok | already_known | not_known

First we define auxiliary schemas that capture various success and error
cases.

__Success
result! : REPORT

result! = ok

__ AlreadyKnown
ZBirthdayBook
name? : NAME
result! : REPORT

name? € known
result! = already_known

__ NotKnown
EBirthdayBook
name? : NAME
result! : REPORT

name? & known
result! = not_known

Finally, we define robust versions of all the operations by specifying how
errors are handled.

RAddBirthday == (AddBirthday N Success) V AlreadyKnown
RFindBirthday == (FindBirthday N Success) V NotKnown
RRemind == Remind N Success

References

[1] J. Michael Spivey. The Z Notation: A Reference Manual. International
Series in Computer Science. Prentice-Hall International (UK) Ltd, second
edition, 1992.

