

 Computer System Organization

Overview of how things work

Compilation and linking system

Operating system

Computer organization

Today’s agenda

User
Interface

A software view

How it works

hello.c program

 #include <stdio.h>

 #define FOO 4

 int main() {

 printf(“hello, world %d\n”, FOO);

 }

Pre-

processor
Compiler Linker Assembler

Program

Source

Modified

Source

Assembly

Code

Object

Code

Executable

Code

hello.c hello.i hello.s hello.o hello

The Compilation system

gcc is the compiler driver

gcc invokes several other compilation phases

Preprocessor

Compiler

Assembler

Linker

What does each one do? What are their outputs?

Preprocessor

First, gcc compiler driver invokes cpp to generate
expanded C source

cpp just does text substitution

Converts the C source file to another C source file

Expands #defines, #includes, etc.

Output is another C source file

#include <stdio.h>

#define FOO 4

int main() {

 printf(“hello, world %d\n”, FOO);

}

…

extern int printf (const char *__restrict __format, ...);

…

int main() {

 printf("hello, world %d\n", 4);

}

Preprocesser

Included files:
#include <foo.h>

#include “bar.h”

Defined constants:
#define MAXVAL 40000000

 By convention, all capitals tells us it’s a constant, not a variable.

Macros:
#define MIN(x,y) ((x)<(y) ? (x):(y))

#define RIDX(i, j, n) ((i) * (n) + (j))

Preprocesser

Conditional compilation:
#ifdef … or #if defined(…)

#endif

Code you think you may need again (e.g. debug print

statements)

 Include or exclude code based on #define, #ifdef

 gcc –D DEBUG equivalent to #define DEBUG

 More readable than commenting code out

http://thefengs.com/wuchang/courses/cs201/class/03/def

Preprocesser

Portability

Compilers with “built in” constants defined

Use to conditionally include code

 Operating system specific code

#if defined(__i386__) || defined(WIN32) || …

 Compiler-specific code

#if defined(__INTEL_COMPILER)

 Processor-specific code

#if defined(__SSE__)

Next, gcc compiler driver invokes cc1 to generate
assembly code

Translates high-level C code into assembly

 Variable abstraction mapped to memory locations and registers

 Logical and arithmetic functions mapped to underlying machine

opcodes

Compiler

Compiler
…

extern int printf (const char *__restrict __format, ...);

…

int main() {

 printf("hello, world %d\n", 4);

}

 .section .rodata

.LC0:

 .string "hello, world %d\n“

 .text

main:

 pushq %rbp

 movq %rsp, %rbp

 movl $4, %esi

 movl $.LC0, %edi

 movl $0, %eax

 call printf

 popq %rbp

 ret

Assembler

Next, gcc compiler driver invokes as to generate object
code

Translates assembly code into binary object code that can

be directly executed by CPU

Assembler

Hex dump of section '.rodata':

0x004005d0 01000200 68656c6c 6f2c2077 6f726c64hello, world

0x004005e0 2025640a 00 %d..

Disassembly of section .text:

000000000040052d <main>:

40052d: 55 push %rbp

40052e: 48 89 e5 mov %rsp,%rbp

400531: be 04 00 00 00 mov $0x4,%esi

400536: bf d4 05 40 00 mov $0x4005d4,%edi

40053b: b8 00 00 00 00 mov $0x0,%eax

400540: e8 cb fe ff ff callq 400410 <printf@plt>

400545: 5d pop %rbp

400546: c3 retq

 .section .rodata

.LC0:

 .string "hello, world %d\n“

 .text

main:

 pushq %rbp

 movq %rsp, %rbp

 movl $4, %esi

 movl $.LC0, %edi

 movl $0, %eax

 call printf

 popq %rbp

 ret

Linker

Finally, gcc compiler driver calls linker (ld) to generate
executable

Merges multiple relocatable (.o) object files into a single

executable program

Copies library object code and data into executable

Relocates relative positions in library and object files to

absolute ones in final executable

Linker (ld)

a.o

p

m.o Libraries

libc.a

This is the executable program

Linker

Resolves external references

External reference: reference to a symbol defined in another
object file (e.g. printf)

Updates all references to these symbols to reflect their new

positions.

 References in both code and data

printf(); /* reference to symbol printf */

int *xp=&x; /* reference to symbol x */

Benefits of linking

Modularity and space

Program can be written as a collection of smaller source

files, rather than one monolithic mass.

Can build libraries of common functions (more on this later)

 e.g., Math library, standard C library

Compilation efficiency

 Change one source file, compile, and then relink.

 No need to recompile other source files.

Space efficiency

 Libraries of common functions can be aggregated into a single

file used by all programs

http://thefengs.com/wuchang/courses/cs201/class/03

Pre-

processor
Compiler Linker Assembler

Program

Source

Modified

Source

Assembly

Code

Object

Code

Executable

Code

hello.c hello.i hello.s hello.o hello

Summary of compilation process

Compiler driver (cc or gcc) coordinates all steps

 Invokes preprocessor (cpp), compiler (cc1), assembler (as),

and linker (ld).

Passes command line arguments to appropriate phases

Translator

atoi.c

atoi.o

Translator

printf.c

printf.o

... Translator

random.c

random.o

Archiver (ar)

ar rs libc.a atoi.o printf.o … random.o

Creating and using libc

Translator

p1.c

p1.o

Translator

p2.c

p2.o

C standard library

archive of relocatable

object files concatenated

into one file
libc.a

Linker (ld)

executable object file (with code and data
for libc functions needed by p1.c and

p2.c copied in)‏

p

libc.a (the C standard library)

 5 MB archive of more than 1000 object files.

 I/O, memory allocation, signals, strings, time, random numbers

libm.a (the C math library)

 2 MB archive of more than 400 object files.

 floating point math (sin, cos, tan, log, exp, sqrt, …)

% ar -t /usr/lib/x86_64-linux-gnu/libc.a | sort

…

fork.o

…

fprintf.o

fpu_control.o

fputc.o

freopen.o

fscanf.o

fseek.o

fstab.o

…

LibC libraries

% ar -t /usr/lib/x86_64-linux-gnu/libm.a | sort

…

e_acos.o

e_acosf.o

e_acosh.o

e_acoshf.o

e_acoshl.o

e_acosl.o

e_asin.o

e_asinf.o

e_asinl.o

…

Translator

squareit.c

squareit.o

Translator

cubeit.c

cubeit.o

Archiver (ar)

ar rs libmyutil.a squareit.o cubeit.o

Creating your own static libraries

Translator

mathtest.c

mathtest.o

Archive of your object

files concatenated into

one file libmyutil.a

Linker (ld)

executable object file (with code and data
for libmyutil functions needed by

mathtest.c copied in)

p

Suppose you have utility code in squareit.c and
cubeit.c that all of your programs use

Create a library libmyutil.a using ar and ranlib and link library

in statically

 libmyutil.a : squareit.o cubeit.o

 ar rvu libmyutil.a squareit.o cubeit.o

 ranlib libmyutil.a

Compile your program that uses library calls and link in

library statically

 gcc –o mathtest mathtest.c –L. –lmyutil

 Note: Only the library code “mathtest” needs from libmyutil is

copied directly into binary

 List functions in binary or library

http://thefengs.com/wuchang/courses/cs201/class/03/libexample

 nm libmyutil.a

Creating your own static libraries

Problems with static libraries

Multiple copies of common code on disk

 “gcc program.c –lc” creates an a.out with libc object

code copied into it (libc.a)

Almost all programs use libc!

Large number of binaries on disk with the same code in it

Libraries and linking

Two types of libraries

Static libraries

 Library of code that linker copies into the executable at compile

time

Dynamic shared object libraries

 Code loaded at run-time by system loader upon program

execution

Dynamic libraries

Have binaries compiled with a reference to a library of
shared objects on disk

Libraries loaded at run-time from file system rather than
copied in at compile-time

 “ldd <binary>” to see dependencies

 gcc flag “–shared” to create dynamic shared object files (.so)

Caveat
 How does one ensure dynamic libraries are present across all

run-time environments?

 Static linking (via gcc’s –static flag) to create self-

contained binaries and avoid problems with DLL versions

libc.so functions called by m.c

and a.c are loaded, linked, and

(potentially) shared among

processes.

Shared library of dynamically

relocatable object files

Translators

(cc1, as)

m.c

m.o

Translators

(cc1,as)

a.c

a.o

libc.so

Linker (ld)

p

Loader/Dynamic Linker

(ld-linux.so)

Fully linked executable

p’‏(in‏memory)

Partially linked executable p

(on disk)

p’

Dynamically Linked Shared Libraries

Translator

m.c

m.o

Translator

a.c

a.o

libc.so

Static Linker (ld)

p

Loader/Dynamic Linker

(ld-linux.so)

libwhatever.a

p’

libm.so

The Complete Picture

The (Actual) Complete Picture

Dozens of processes use libc.so

Each process reads libc.so from disk and loads private copy
into address space

Multiple copies of the *exact* code resident in memory for
each!

Modern operating systems keep one copy of library in read-
only memory
 Single shared copy

 Shared virtual memory (page-sharing) to reduce memory use

Program execution

gcc/cc output an executable in the ELF format (Linux)

 Executable and Linkable Format

Standard unified binary format for

 Relocatable object files (.o),

 Shared object files (.so)

 Executable object files

Equivalent to Windows Portable Executable (PE) format

ELF header

Program header table

(required for executables)

.text section

.data section

.bss section

.symtab

.rela.text

.rela.data

.debug

Section header table

(required for relocatables)

0

ELF Object File Format

ELF header

Magic number, type (.o, exec, .so),

machine, byte ordering, etc.

Program header table

Page size, addresses of memory

segments (sections), segment sizes.

.text section

Code

.data section

 Initialized (static) data

.bss section

Uninitialized (static) data

 “Block Started by Symbol”

ELF header

Program header table

(required for executables)

.text section

.data section

.bss section

.symtab

.rela.text

.rela.data

.debug

Section header table

(required for relocatables)

0

ELF Object File Format (cont)

.symtab section

Symbol table

Procedure and static variable names

Section names and locations

.rela.text section

Relocation info for .text section

.rela.data section

Relocation info for .data section

.debug section

 Info for symbolic debugging (gcc -g)

int e=7;

extern int a();

int main() {

 int r = a();

 exit(0);

}

m.c a.c

extern int e;

int *ep=&e;

int x=15;

int y;

int a() {

 return *ep+x+y;

}

Def of local
symbol e

Ref to external

symbol exit

(defined in
libc.so)

Ref to

external
symbol e

Def of

local

symbol
ep

Defs of

local

symbols
x and y

Refs of local
symbols ep,x,y

Def of

local
symbol a

Ref to external
symbol a

Relocation code example

Symbols for code and data

 Definitions and references

 References can be either local or external.

 Addresses of references must be resolved when loaded

main()

m.o

int *ep = &e

a()

a.o

int e = 7

headers

main()

a()

0 system code

int *ep = &e

int e = 7

system data

more system code

int x = 15
int y

system data

int x = 15

Object Files Executable Object File

.text

.text

.data

.text

.data

.text

.data

.bss

.symtab

.debug

.data

uninitialized data .bss

system code

Merging Object Files into an
Executable Object File

int e=7;

extern int a();

int main() {

 int r = a();

 exit(0);

}

extern int e;

int *ep=&e;

int x=15;

int y;

int a() {

 return *ep+x+y;

}

m.c

a.c

readelf -a

Relocation

Compiler does not know where code will be loaded into memory
upon execution

 Instructions and data that depend on location must be “fixed” to

actual addresses

 i.e. variables, pointers, jump instructions

.rela.text section

 Addresses of instructions that will need to be modified in the

executable

 Instructions for modifying

 (e.g. a() in m.c)

.rela.data section

 Addresses of pointer data that will need to be modified in the

merged executable

 (e.g. ep in a.c)

Relocation example

int e=7;

extern int a();

int main() {

 int r = a();

 exit(0);

}

m.c a.c

extern int e;

int *ep=&e;

int x=15;

int y;

int a() {

 return *ep+x+y;

}

readelf -a a.o ; .rela.text contains ep, x, and y from a()
 ; .rela.data contains e to initialize ep

objdump -d a.o ; Shows relocations in .text

objdump -d m ; After linking, references placed at fixed
 ; relative offset to RIP

http://thefengs.com/wuchang/courses/cs201/class/03/elf_example

What is in .text, .data, .rela.text, and .rela.data?

int e=7;

extern int a();

int main() {

 int r = a();

 exit(0);

}

m.c a.c

extern int e;

int *ep=&e;

int x=15;

int y;

int a() {

 return *ep+x+y;

}

Relocation example

readelf -a m.o ; .rela.text contains a and exit from main()

objdump –d m.o ; Show relocations in.text

objdump –d m ; After linking, symbols resolved in <main>
 ; for <a> and <exit>

Operating system

Program runs on top of operating system that implements abstract
view of resources

 Files as an abstraction of storage and network devices

 System calls an abstraction for OS services

 Virtual memory a uniform memory space abstraction for each
process

 Gives the illusion that each process has entire memory space

 A process (in conjunction with the OS) provides an abstraction for
a virtual computer
 Slices of CPU time to run in

 CPU state

 Open files

 Thread of execution

 Code and data in memory

Protection

 Protects the hardware/itself from user programs

 Protects user programs from each other

 Protects files from unauthorized access

Program execution

The operating system creates a process.

 Including among other things, a virtual memory space

System loader reads program from file system and

loads its code into memory

Program includes any statically linked libraries

Done via DMA (direct memory access)

System loader loads dynamic shared objects/libraries

into memory

Links everything together and then starts a thread of

execution running

Note: the program binary in file system remains and can be

executed again

Program is a cookie recipe, processes are the cookies

ELF header

Program header table

(required for executables)

.text section

.data section

.bss section

.symtab

.rel.text

.rel.data

.debug

Section header table

(required for relocatables)

0

.text segment

(r/o)

.data segment

(initialized r/w)

.bss segment

(uninitialized r/w)

Executable object file for

example program p

Process image

0x0408494

init and shared lib

segments

0x04083e0

Virtual addr

0x040a010

0x040a3b0

Loading Executable Binaries

Where are programs loaded in memory?

An evolution….

Primitive operating systems

 Single tasking.

 Physical memory addresses go from zero to N.

The problem of loading is simple

 Load the program starting at address zero

 Use as much memory as it takes.

 Linker binds the program to absolute addresses at compile-

time

 Code starts at zero

 Data concatenated after that

 etc.

Where are programs loaded, cont’d

Next imagine a multi-tasking operating system on a primitive

computer.

 Physical memory space, from zero to N.

 Applications share space

 Memory allocated at load time in unused space

 Linker does not know where the program will be loaded

 Binds together all the modules, but keeps them relocatable

How does the operating system load this program?

 Not a pretty solution, must find contiguous unused blocks

How does the operating system provide protection?

 Not pretty either

Where are programs loaded, cont’d

Next, imagine a multi-tasking operating system on a
modern computer, with hardware-assisted virtual
memory (Intel 80286/80386)

OS creates a virtual memory space for each program.

As if program has all of memory to itself.

Back to the simple model

The linker statically binds the program to virtual addresses

At load time, OS allocates memory, creates a virtual address

space, and loads the code and data.

Binaries are simply virtual memory snapshots of programs

(Windows .com format)

Modern linking and loading

Reduce storage via dynamic linking and loading

Single, uniform VM address space still

But, library code must vie for addresses at load-time

 Many dynamic libraries, no fixed/reserved addresses to map

them into

 Code must be relocatable again

 Useful also as a security feature to prevent predictability in

exploits (Address-Space Layout Randomization)

Extra

More on the linking process (ld)

Resolves multiply defined symbols with some
restrictions

Strong symbols = initialized global variables, functions

Weak symbols = uninitialized global variables, functions

used to allow overrides of function implementations

Simulates inheritance and function overiding (as in C++)

Rules

 Multiple strong symbols not allowed

 Choose strong symbols over weak symbols

 Choose any weak symbol if multiple ones exist

48-bit canonical address space implementations

 Reduce width of addresses to make page-tables smaller

 Kernel addresses have high-bit set

reserved for kernel

(code, data, heap, stack)‏

memory mapped region for

shared libraries

run-time heap

(managed by malloc)‏

user stack

(created at runtime)‏

unused
0

%esp (stack pointer)‏

memory

invisible to

user code

brk

0x7ffe96110000

0x00400000

0x7f81bb0b5000

read/write segment

(.data, .bss)‏

read-only segment

(.init, .text, .rodata)‏

loaded from the

executable file

0xffffffffffffffff

Modern 64-bit memory map

cat /proc/self/maps

0xffff800000000000

