
Operations and Arithmetic

Floating point representation

– 2 –

Operations in C

Have the data, what now?
 Boolean operations
 Logical operations
 Arithmetic operations

– 3 –

Boolean Algebra

Algebraic representation of logic
 Encode “True” as 1 and “False” as 0
 Operators & | ~ ^

AND (&)
 A&B = 1 when both A=1 and B=1

OR (|)
 A|B = 1 when either A=1 or B=1

NOT (~)
 ~A = 1 when A=0

XOR/EXCLUSIVE-OR (^)
 A^B = 1 when either A=1 or B=1, but not both

– 4 –

In C

Operators the same (&, | , ~, ^)
 Apply to any “integral” data type

long, int, short, char
View arguments as bit vectors
Arguments applied bit-wise

 Examples

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

– 5 –

Practice problem

0x69 & 0x55

0x69 | 0x55

0x69 ^ 0x55

~0x55

– 6 –

Practice problem

0x69 & 0x55
01101001

01010101

01000001 = 0x41

0x69 | 0x55
01101001

01010101

01111101 = 0x7D

0x69 ^ 0x55
01101001

01010101

00111100 = 0x3C

~0x55
01010101

10101010 = 0xAA

– 7 –

Shift Operations

Left Shift: x << y
 Shift bit-vector x left y positions

Throw away extra bits on left
Fill with 0’s on right

Right Shift: x >> y
 Shift bit-vector x right y

positions
Throw away extra bits on right

 Logical shift
Fill with 0’s on left

 Arithmetic shift
Replicate most significant bit on

left
Recall two’s complement integer

representation
Perform division by 2 via shift

01100010Argument x

00010000x << 3

10100010Argument x

00101000Log. x >> 2

11101000Arith. x >>2

0001000000010000

00101000

11101000

00101000

11101000

– 8 –

Practice problem

x x<<3 x>>2
(Logical)

x>>2
(Arithmetic)

0xf0

0x0f

0xcc

0x55

– 9 –

Practice problem

x x<<3 x>>2
(Logical)

x>>2
(Arithmetic)

0xf0 0x80 0x3c 0xfc

0x0f 0x78 0x03 0x03

0xcc 0x60 0x33 0xf3

0x55 0xa8 0x15 0x15

– 10 –

Logic Operations in C

Operations always return 0 or 1

Comparison operators
 >, >=, <, <=, ==, !=

Logical Operators
 &&, ||, !

 Logical AND, Logical OR, Logical negation
 0 is “False”, anything nonzero is “True”

Examples (char data type)
 !0x41 --> 0x00
 !0x00 --> 0x01
 !!0x41 --> 0x01

What are the values of:
 0x69 || 0x55
 0x69 | 0x55
 What does this expression do? (p && *p)

– 11 –

Logical vs. Bitwise operations

Watch out
 Logical operators versus bitwise boolean operators
 && versus &
 || versus |
 == versus =

https://freedom-to-tinker.com/blog/felten/the-linux-backdoor-attempt-of-2003/

– 12 –

int x, y;

For any processor, independent of the size of an integer, write C
expressions without any “=“ signs that are true if:
 x and y have any non-zero bits in common in their low order byte

 x has any 1 bits at higher positions than the low order 8 bits

 x is zero

 x == y

Using Bitwise and Logical operations

– 13 –

Using Bitwise and Logical operations

int x, y;

For any processor, independent of the size of an integer, write C
expressions without any “=“ signs that are true if:
 x and y have any non-zero bits in common in their low order byte

 x has any 1 bits at higher positions than the low order 8 bits

 x is zero

 x == y

0xff & (x & y)

~0xff & x (x & 0xff)^x (x >> 8)

!x

!(x^y)

– 14 –

Arithmetic operations

Signed/unsigned
 Addition and subtraction
 Multiplication
 Division

– 15 –

Unsigned addition

Suppose we have a computer with 4-bit words

What is the unsigned value of 7 + 7?
 0111 + 0111

What about 9 + 9?
 1001 + 1001

With w bits, unsigned addition is regular addition,
modulo 2w

 Bits beyond w are discarded

– 16 –

Unsigned addition

With 32 bits, unsigned addition is modulo what?

What is the value of 0xc0000000 + 0x70004444 ?

#include <stdio.h>
unsigned int sum(unsigned int a, unsigned int b)
{
 return a+b;
}
main () {
 unsigned int i=0xc0000000;
 unsigned int j=0x70004444;
 printf("%x\n",sum(i,j));
}

Output: 30004444

– 17 –

Two’s-complement numbers have a range of

Their sum has the range

When actual represented result is truncated, it is not
modular as unsigned addition
 However, the bit representation for signed and unsigned

addition is the same

Two’s-Complement Addition

-2w-1 x, y 2w-1 -1

-2w x + y 2w -2

– 18 –

Two’s-Complement Addition

Since we are dealing with signed numbers, we can have
negative overflow or positive overflow

x + y = t
w

x + y – 2w, 2w-1 x + y
x + y, -2w-1 x + y < 2w-1

x + y + 2w, x + y < -2w-1

0

2w-1

2w

x + yt

Positive overflow

2w-1

-2w-1

0

-2w-1

-2w Negative overflow

x + y

Case 4

Case 3

Case 2

Case 1

– 19 –

Example (w=4)

x y x + y x + y

-8
[1000]

-5
[1011]

-13
[10011]

3
[0011]

-8
[1000]

-8
[1000]

-16
[10000]

0
[0000]

-8
[1000]

5
[0101]

-3
[1101]

-3
[1101]

2
[0010]

5
[0101]

7
[0111]

7
[0111]

5
[0101]

5
[0101]

10
[1010]

-6
[1010]

t
4

Case 1

Case 1

Case 2

Case 3

Case 4

x + y =
x + y – 2w, 2w-1 x + y (Case 4)
x + y, -2w-1 x + y < 2w-1 (Case 2/3)
x + y + 2w, x + y < -2w-1 (Case 1)

– 20 –

Unsigned Multiplication

For unsigned numbers: 0 x, y 2w-1 -1
 Thus, x and y are w-bit numbers

The product x*y: 0 x * y (2w-1 -1)2

 Thus, product can require 2w bits

Only the low w bits are used
 The high order bits may overflow

This makes unsigned multiplication modular

x * y = (x * y) mod 2wu
w

– 21 –

Two’s-Complement Multiplication

Same problem as unsigned
 The result of multiplying two w-bit numbers could be as

large as 2w bits

The bit-level representation for two’s-complement and
unsigned is identical
 This simplifies the integer multiplier

As before, the interpretation of this value is based on
signed vs. unsigned

Maintaining exact results
 Need to keep expanding word size with each product

computed
 Must be done in software, if needed

e.g., by “arbitrary precision” arithmetic packages

– 22 –

Security issues with multiplication

SUN XDR library
Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);

ele_src

malloc(ele_cnt * ele_size)

– 23 –

XDR Code

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL)

/* malloc failed */
return NULL;

 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);

/* Move pointer to next memory region */
next += ele_size;

 }
 return result;
}

Not checked for overflow
Can malloc 4096 when 232+4096 needed

– 24 –

XDR Vulnerability

What if:
ele_cnt = 220 + 1

ele_size = 4096 = 212

Allocation = 232 + 4096

How can I make this function secure?

malloc(ele_cnt * ele_size)

– 25 –

Multiplication by Powers of Two

What happens if you shift a binary number left one bit?

What if you shift it left N bits?
000010002 << 2 = 001000002

 (810) << 2 = (3210)

111110002 << 2 = 111000002

(-810) << 2 = (-3210)

Examples
u << 3 == u * 8

(u << 5) – (u << 3) == u * 24
 Most machines shift and add faster than multiply

Compiler may generate this code automatically

– 26 –

Dividing by Powers of Two
(unsigned)
For unsigned numbers, performed via logical right shifts

Quotient of unsigned division by power of 2
 u >> k gives u / 2k
 Rounds towards 0

Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

 u / 2k •••Result:

.

Binary Point

0 •••

– 27 –

Dividing by Powers of Two (signed)

For signed numbers, performed via arithmetic right shifts

Quotient of signed division by power of 2
 x >> k gives x / 2k
 Rounds away from 0!

0 0 1 0 0 0•••

x

2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011
y >> 1 -7606.5 -7607 E2 49 11100010 01001001
y >> 4 -950.8125 -951 FC 49 11111100 01001001
y >> 8 -59.4257813 -60 FF C4 11111111 11000100

– 28 –

Why rounding matters

German parliament (1992)
 5% law before vote allowed to count for a party
 Rounding of 4.97% to 5% allows Green party vote to count
 “Rounding error changes Parliament makeup” Debora Weber-Wulff,

The Risks Digest, Volume 13, Issue 37, 1992

Vancouver stock exchange (1982)
 Index initialized to 1000, falls to 520 in 22 months
 Updates to index value truncated result instead of rounding
 Value should have been 1098

– 29 –

Exam practice
2.1, 2.3, 2.4 hex binary decimal

2.5, 2.7 endian

2.8, 2.12 bit ops

2.14, 2.15 logical ops

2.16 shifts

2.17, 2.19 2s complement

2.21 implicit casting signed unsigned cmp

2.22, 2.23 2s complement sign xtend

2.25, 2.26 casting security problem

2.28 unsigned additive inverse

2.29 2s complement addition cases

2.33 2s complement additive inverse

2.37 xdr vulnerability fix

2.38, 2.40 shift add to multiply

2.43 rce shift add multiply

2.59, 2.61 bit/logical ops in C

Floating point representation
and operations

– 31 –

Fractional Binary Numbers

In Base 10, a decimal point for representing non-integer
values
 125.35 is 1*102+2*101+5*100+3*10-1+5*10-2

In Base 2, a binary point
 bnbn-1…b1b0.b-1b-2…b-m

 b = 2i * bi, i = -m … n

 Example: 101.112 is
1 * 22 + 0 * 21 + 1 * 20 + 1 * 2-1 + 1 * 2-2

4 + 0 + 1 + ½ + ¼ = 5¾

Accuracy is a problem
 Numbers such as 1/5 or 1/3 must be approximated

This is true also with decimal

– 32 –

Fractional binary number example

Convert the following binary numbers

10.1112

1.01112

1011.1012

– 33 –

Floating Point

Integer data type
 32-bit unsigned integers limited to whole numbers from 0 to

just over 4 billion
What about large numbers (e.g. national debt, bank

bailout bill, Avogadro’s number, Google…the number)?
 64-bit unsigned integers up to over 9 quintillion

What about small numbers and fractions (e.g. 1/2 or)?

Requires a different interpretation of the bits!
 New data types in C

float (32-bit IEEE floating point format)
double (64-bit IEEE floating point format)

 32-bit int and float both represent 232 distinct values!
Trade-off range and precision
e.g. to support large numbers (> 232) and fractions, float can

not represent every integer between 0 and 232 !

– 34 –

Floating Point overview

Problem: how can we represent very large or very small
numbers with a compact representation?
 Current way with int

5*2100 as 1010000….000000000000? (103 bits)
Not very compact, but can represent all integers in between

 Another
5*2100 as 101 01100100 (i.e. x=101 and y=01100100)? (11 bits)
Compact, but does not represent all integers in between

Basis for IEEE Standard 754, “IEEE Floating Point”
 Supported in most modern CPUs via floating-point unit
 Encodes rational numbers in the form (M * 2E)

Large numbers have positive exponent E
Small numbers have negative exponent E
Rounding can lead to errors

– 35 –

IEEE Floating-Point

Specifically, IEEE FP represents numbers in the form
 V = (-1)s * M * 2E

Three fields
 s is sign bit: 1 == negative, 0 == positive
 M is the significand, a fractional number
 E is the, possibly negative, exponent

– 36 –

 s is sign bit
 exp field encodes E
 frac field encodes M
 Sizes

Single precision: 8 exp bits, 23 frac bits (32 bits total)
»C type float

Double precision: 11 exp bits, 52 frac bits (64 bits total)
»C type double

Extended precision: 15 exp bits, 63 frac bits
»Only found in Intel-compatible machines

»Stored in 80 bits (1 bit wasted)

IEEE Floating Point Encoding
s exp frac

– 37 –

IEEE Floating-Point

Depending on the exp value, the bits are interpreted differently
 Normalized (most numbers): exp is neither all 0’s nor all 1’s

 E is (exp – Bias)
» E is in biased form:

• Bias=127 for single precision
• Bias=1023 for double precision

» Allows for negative exponents
 M is 1 + frac

 Denormalized (numbers close to 0): exp is all 0’s
 E is 1-Bias

» Not set to –Bias in order to ensure smooth transition from
Normalized

 M is frac
» Can represent 0 exactly
» IEEE FP handles +0 and -0 differently

 Special values: exp is all 1’s
 If frac == 0, then we have ±, e.g., divide by 0
 If frac != 0, we have NaN (Not a Number), e.g., sqrt(-1)

– 38 –

Encodings form a continuum

Why two regions?
 Allows 0 to be represented
 Allows for smooth transition near 0
 Encoding allows magnitude comparison to be done via

integer unit

NaNNaN

+

0

+Denorm +Normalized-Denorm-Normalized

+0

– 39 –

Normalized Encoding Example
Using 32-bit float

Value
 float f = 15213.0; /* exp=8 bits, frac=23 bits */
 1521310 = 111011011011012

 = 1.11011011011012 X 213 (normalized form)

Significand
 M = 1.11011011011012

 frac= 110110110110100000000002

Exponent
 E = 13
 Bias = 127
 Exp = 140 = 100011002

Floating Point Representation :

Hex: 4 6 6 D B 4 0 0

Binary: 0100 0110 0110 1101 1011 0100 0000 0000

140: 100 0110 0

15213: 1110 1101 1011 01

http://thefengs.com/wuchang/courses/cs201/class/05/normalized_float.c

– 40 –

Denormalized Encoding Example

http://thefengs.com/wuchang/courses/cs201/class/05/denormalized_float.c

Using 32-bit float

Value
 float f = 7.347e-39; /* 7.347*10-39 */

– 41 –

Distribution of Values

7-bit IEEE-like format
 e = 4 exponent bits
 f = 3 fraction bits
 Bias is 7 (Bias is always set to half the range of exponent –

1)

– 42 –

7-bit IEEE FP format (Bias=7)
s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

– 43 –

Distribution of Values

Number distribution gets denser toward zero

– 44 –

Distribution of Values (close-up view)

6-bit IEEE-like format
e = 3 exponent bits

f = 2 fraction bits

Bias is 3
s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

– 45 –

Practice problem 2.47

Consider a 5-bit IEEE floating point representation
 1 sign bit, 2 exponent bits, 2 fraction bits, Bias = 1

Fill in the following table

Bits exp E frac M V

0 00 00

0 00 11

0 01 00

0 01 10

0 10 11

– 46 –

Practice problem 2.47

Consider a 5-bit IEEE floating point representation
 1 sign bit, 2 exponent bits, 2 fraction bits, Bias = 1

Fill in the following table

Bits exp E frac M V

0 00 00 0 0 0 0 0

0 00 11 0 0 ¾ ¾ ¾

0 01 00 1 0 0 1 1

0 01 10 1 0 ½ 1 ½ 1 ½

0 10 11 2 1 ¾ 1 ¾ 3 ½

– 47 –

Floating Point Operations

FP addition is
 Commutative: x + y = y + x
 NOT associative: (x + y) + z != x + (y + z)

 (3.14 + 1e10) – 1e10 = 0.0, due to rounding
3.14 + (1e10 – 1e10) = 3.14

 Very important for scientific and compiler programmers

FP multiplication
 Is not associative
 Does not distribute over addition

1e20 * (1e20 – 1e20) = 0.0
1e20 * 1e20 – 1e20 * 1e20 = NaN

 Again, very important for scientific and compiler
programmers

– 48 –

Approximations and estimations

Famous floating point errors
 Patriot missile (rounding error from inaccurate

representation of 1/10 in time calculations)
28 killed due to failure in intercepting Scud missile (2/25/1991)

 Ariane 5 (floating point cast to integer for efficiency caused
overflow trap)

 Microsoft's sqrt estimator...

– 49 –

Floating Point in C

C guarantees two levels
 float single precision
 double double precision

Casting between data types (not pointer types)
 Casting between int, float, and double results in

(sometimes inexact) conversions to the new
representation

 float to int
Not defined when beyond range of int
Generally saturates to TMin or TMax

 double to int
Same as with float, but, fractional part also truncated (53-

bit to 32-bit)
 int to double

Exact conversion
 int to float

Will round

– 50 –

Floating Point Puzzles
int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NAN

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ((d*2) < 0.0)

• d > f -f > -d

• d * d >= 0.0

• (d+f)-d == f

No: 24 bit significand

Yes: 53 bit significand

Yes: increases precision

No: loses precision

Yes: Just change sign bit

No: 2/3 == 0

Yes (Note use of -)

Yes!

Yes! (Note use of +)

No: Not associative

– 51 –

Wait a minute…

Recall
 x == (int)(float) x No: 24 bit significand

Compiled with gcc –O2, this is true!

Example with x = 2147483647.

What’s going on?
 See B&O 2.4.6
 x86 uses 80-bit floating point registers
 Optimized code does not return intermediate

results into memory
 Keeps case in 80-bit register

 Non-optimized code returns results into
memory

 32 bits for intermediate float

int x = …;

float f = …;

double d = …;

http://thefengs.com/wuchang/courses/cs201/class/05/cast_noround.c

– 52 –

Practice problem 2.49

For a floating point format with a k-bit exponent and an
n-bit fraction, give a formula for the smallest positive
integer that cannot be represented exactly (because
it would require an n+1 bit fraction to be exact)

– 53 –

Practice problem 2.49

For a floating point format with a k-bit exponent and an
n-bit fraction, give a formula for the smallest positive
integer that cannot be represented exactly (because
it would require an n+1 bit fraction to be exact)
 What is the smallest n+1 bit integer?

2(n+1)

» Can this be represented exactly?

» Yes. s=0, exp=Bias+n+1, frac=0

» E=n+1 , M=1 , V=2(n+1)

 What is the next largest n+1 bit integer?
2(n+1) +1

» Can this be represented exactly?

» No. Need an extra bit in the fraction.

– 54 –

Exam practice
2.45 fractional binary numbers

2.47 5 bit floats

2.48 32 bit floats

2.54 float casts

2.87 half-precision float

2.90 float parsing in C

– 55 –

Extra

– 56 –

Why rounding matters

Well-known errors in currency exchange
 Direct conversion inaccuracy

 Reconversion errors going to and from currency

 Totaling errors (compounded rounding errors)

	Slide 1
	Slide 2
	Boolean Algebra
	In C
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Security issues with multiplication
	XDR Code
	XDR Vulnerability
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Exam practice
	Slide 30
	Slide 31
	Fractional binary number example
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Distribution of Values (close-up view)
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Exam practice
	Extra
	Slide 56

