
Structures

– 2 – 16

Structures

Complex data type defined by programmer

 Keeps together pertinent information of an object

 Contains simple data types or other complex data types

 Similar to a class in C++ or Java, but without methods

Example from graphics: a point has two coordinates
struct point {

 double x;

 double y;

};

 x and y are called members of struct point

Since a structure is a data type, you can declare
variables:

struct point p1, p2;

What is the size of struct point?

– 3 –

Accessing structures

struct point {

 double x;

 double y;

};

struct point p1;

Use the “.” operator on structure objects to obtain members
p1.x = 10;

p1.y = 20;

Use the “->” operator on structure pointers to obtain members
struct point *pp=&p1;

 double d;

 Long-form for accessing structures via pointer

 d = (*pp).x;

 Short-form using “->” operator
d = pp->x;

Initializing structures like other variables:
struct point p1 = {320, 200};

 Equivalent to: p1.x = 320; p1.y = 200;

– 4 –

32

More structures

Structures can contain other structures as members:
struct rectangle {

 struct point pt1;

 struct point pt2;

};

 What is the size of a struct rectangle?

Structures can be arguments of functions

 Passed by value like most other data types

 Compare to arrays

– 5 –

More structures
Arrays within structures are passed by value!

#include <stdio.h>

struct two_arrays {

char a[200];

char b[200];

};

void func(struct two_arrays t, long i) {

 printf("t.a is at: %p t.b is at: %p\n",&t.a,&t.b);

 if (i>0) func(t,i-1);

}

main() {

struct two_arrays a;

 func(a,2);

}

% ./a.out

t.a is at: 0x7ffe77b2b8d0 t.b is at: 0x7ffe77b2b998

t.a is at: 0x7ffe77b2b720 t.b is at: 0x7ffe77b2b7e8

t.a is at: 0x7ffe77b2b570 t.b is at: 0x7ffe77b2b638

% objdump -d a.out

...

 40061c: mov $0x32,%eax

 400621: mov %rdx,%rdi

 400624: mov %rax,%rcx

 400627: rep movsq %ds:(%rsi),%es:(%rdi)

 40062a: mov $0x2,%edi

 40062f: callq 40059d <func>

– 6 –

More structures

Avoid copying via pointer passing...
#include <stdio.h>

struct two_arrays {

char a[200];

char b[200];

};

void func(struct two_arrays *t, int i) {

 printf("t->a is at: %p t->b is at: %p\n",&t->a,&t->b);

 if (i>0) func(t,i-1);

}

main() {

 struct two_arrays a, *ap;

 ap = &a;

 func(ap,2);

}

% ./a.out

t.a is at: 0x7ffdea1f79d0 t.b is at: 0x7ffdea1f7a98

t.a is at: 0x7ffdea1f79d0 t.b is at: 0x7ffdea1f7a98

t.a is at: 0x7ffdea1f79d0 t.b is at: 0x7ffdea1f7a98

% objdump -d a.out

…

 400619: mov $0x2,%esi

 40061e: mov %rsp,%rdi

 400621: callq 4005bd <func>

– 7 –

Operations on structures

Legal operations

 Copy a structure (assignment equivalent to memcpy)

 Get its address

 Access its members

Illegal operations

 Compare content of structures in their entirety

 Must compare individual parts

Structure operator precedences

 “.” and “->” higher than other operators

 *p.x is the same as *(p.x)

 ++p->x is the same as ++(p->x)

– 8 –

typedef struct tnode {

 char *word;

 int count;

 Treeptr left;

 Treeptr right;

} Treenode;

Treenode td; // struct tnode td;

C typedef

C allows us to declare new datatypes using “typedef” keyword

 The thing being named is then a data type, rather than a variable

typedef int Length;

Length sideA; // may be more intuitive than

int sideA;

Often used when working with structs

– 9 –

struct tnode {

 char *word;

 int count;

 struct tnode *next;

} p;

Self-referential structures

A structure can contain members that are pointers to
the same struct (i.e. nodes in linked lists)

– 10 –

Concept

 Contiguously-allocated region of memory

 Members may be of different types

 Accessed statically, code generated at compile-time

Accessing Structure Member

struct rec {

 int i;

 int a[3];

 int *p;

};

Assembly

%eax = val

%rdx = r

movl %eax,(%rdx) # Mem[r] = val

void

set_i(struct rec *r, int val)

{ r->i = val;}

Memory Layout

i a p

0 4 16 24

Structures in assembly

– 11 –

struct rec {

 int i;

 int a[3];

 int *p;

};

%rcx = idx

%rdx = r

leaq 0(,%rcx,4),%rax # 4*idx

leaq 4(%rax,%rdx),%rax # r+4*idx+4

int * find_a (struct rec *r, int idx)

{

 return &r->a[idx];

}

i a p

0 4 16

r + 4 + 4*idx

r
Example

– 12 –

How many total bytes does the structure require?

What are the byte offsets of the following fields?

p

s.x

s.y

next

Consider the following C code:

Fill in the missing expressions

struct prob {

 int *p;

 struct {

 int x;

 int y;

 } s;

 struct prob *next;

};

/* sp in %rdi */

sp_init:

 movl 12(%rdi), %eax

 movl %eax, 8(%rdi)

 leaq 8(%rdi), %rax

 movq %rax, (%rdi)

 movq %rdi, 16(%rdi)

 ret

void sp_init(struct prob *sp)

{

 sp->s.x = ___________;

 sp->p = ___________;

 sp->next = ___________;

}

24

0

8

12

16

&(sp->s.x)

sp->s.y

sp

Practice problem 3.39

– 13 –

Aligning structures

Data must be aligned at specific offsets in memory

Align so that data does not cross access boundaries
and cache line boundaries

Why?

 Low-level memory access done in fixed sizes at fixed offsets

 Alignment allows items to be retrieved with one access
 Storing a long at 0x00

» Single memory access to retrieve value

 Storing a long at 0x04

» Two memory accesses to retrieve value

 Addressing code simplified
 Scaled index addressing mode works better with aligned

members

Compiler inserts gaps in structures to ensure correct
alignment of fields

– 14 –

Alignment in x86-64

Aligned data required on some machines; advised on
x86-64

If primitive data type has size K bytes, address must be
multiple of K

 char is 1 byte

 Can be aligned arbitrarily

 short is 2 bytes

 Member must be aligned on even addresses

 Lowest bit of address must be 0

 int, float are 4 bytes

 Member must be aligned to addresses divisible by 4

 Lowest 2 bits of address must be 00

 long, double, pointers, … are 8 bytes

 Member must be aligned to addresses divisible by 8

 Lowest 3 bits of address must be 000

– 15 –

Alignment with Structures

Each member must satisfy its own alignment
requirement

Overall structure must also satisfy an alignment
requirement “K”

 K = Largest alignment of any element

 Initial address must be multiple of K

 Structure length must be multiple of K
 For arrays of structures

– 16 –

struct S1 {

 char c;

 int i[2];

 double v;

} *p;

c i[0] i[1] v

p+0 p+4 p+8 p+16 p+24

Multiple of 4
Multiple of 8 Multiple of 8 Multiple of 8

K = 8, due to double element

Example

What is K for S1?

 K = 8, due to double element

What is the size of S1?

 24 bytes

Draw S1

– 17 –

struct S2 {

 double x;

 int i[2];

 char c;

} *p;

struct S3 {

 float x[2];

 int i[2];

 char c;

} *p;

p+0 p+12 p+8 p+16 p+24

c i[0] i[1] x

c i[0] i[1]

p+0 p+12 p+8 p+16 p+20

x[0] x[1]

p+4

Draw the allocation for this structure

p must be multiple of 4

Draw the allocation for this structure
What is K?

Examples

– 18 –

struct S4 {

 char c1;

 double v;

 char c2;

 int i;

} *p;

struct S5 {

 double v;

 char c1;

 char c2;

 int i;

} *p;

c1 i v

p+0 p+20 p+8 p+16 p+24

c2

c1 i v

p+0 p+12 p+8 p+16

c2

10 bytes wasted

2 bytes wasted

Reordering to reduce wasted space

Largest data first

– 19 –

0, 4, 8, 12 : 16 bytes : 4

0, 4, 5, 8 : 16 bytes : 8

0, 6 : 10 bytes : 2

0, 16 : 40 bytes : 8

0, 24 : 40 bytes : 8

Practice problem 3.44

For each of the following structure declarations,
determine the offset of each field, the total size of the
structure, and its alignment requirement

struct P1 {int i; char c; int j; char d;};

struct P2 {int i; char c; char d; long j;};

struct P3 {short w[3]; char c[3];};

struct P4 {short w[5]; char *c[3];};

struct P5 {struct P3 a[2]; struct P2 t}

– 20 –

What are the byte offsets of each field?

What is the total size of the structure?

Rearrange the structure to minimize space

Answer the two questions again

struct {

 char *a;

 short b;

 double c;

 char d;

 float e;

 char f;

 long g;

 int h;

} rec;

Practice problem 3.45

0 8 16 24 28 32 40 48

Must be multiple of K (8) => 56

a, c, g, e, h, b, d, f

0 8 16 24 28 32 34 35

Multiple of 8 => 40

– 21 –

a[0]

a+0

a[1] a[2]

a+12 a+24 a+36

• • •

a+12 a+20 a+16 a+24

struct S6 {

 short i;

 float v;

 short j;

} a[10];

a[1].i a[1].j a[1].v

Arrays of Structures

Principle

 Allocated by repeating allocation

for array type

– 22 –

struct S6 {

 short i;

 float v;

 short j;

} a[10];

a[0]

a+0

a[i]

a+12i

• • • • • •

a+12i a+12i+4

a[1].i a[1].j a[1].v

Multiple of 4

Multiple of 4

Satisfying Alignment within Arrays

Achieving Alignment

 Starting address must be K aligned

 a must be multiple of 4

 Individual array elements must be K aligned

 Structure padded with unused space to be 12

bytes (multiple of 4)

 As a result, size of structure is a multiple of K

 Structure members must meet their own

alignment requirement

 v’s offset of 4 is a multiple of 4

– 23 –

struct point {

 double x;

 double y

};

struct octagon {

// An array can be an element of a structure ...

 struct point points[8];

} A[34];

struct octagon *r = A;

r += 8;

What is the size of a struct octagon?

What is the difference between the address r and the address A?

16*8 = 128

128*8 = 1024

Exercise

– 24 –

union U1 {

 char c;

 int i[2];

 double v;

} *up;

c

i[0] i[1]

v

up+0 up+4 up+8

Unions

A union is a variable that may hold objects of different types and sizes

Sort of like a structure with all the members on top of each other.

The size of the union is the maximum of the size of the individual
datatypes

– 25 –

union u_tag {

 int ival;

 float fval;

 char *sval;

} u;

u.ival = 14;

u.fval = 31.3;

u.sval = (char *) malloc(strlen(string)+1);

What’s the size of u?

What exactly does u contain after these three lines of code?

Unions

– 26 –

Bit Fields

If you have multiple Boolean variables, you may save space by
just making them bit fields

 Used heavily in device drivers

 Simplifies code

The Linux system call to open a file:

 int fd = open(“file”, O_CREAT|O_WRONLY|O_TRUNC);

 Second argument is an integer, using bit fields to specify how to
open it.

 In this case, create a new file if it doesn’t exist, for writing only, and
truncate the file if it already exists.

– 27 –

Implementing Bit Fields

You can use an integer and create bit fields using bitwise
operators:

 32 bit-field flags in a single integer

Via #defines
#define A 0x01

#define B 0x02

#define C 0x04

#define D 0x08

 Note that they are powers of two corresponding to bit positions

Via enum

 Constant declarations (i.e. like #define, but values are generated if
not specified by programmer)

enum { A = 01, B = 02, C = 04, D = 08 };

Example
int flags;

flags |= A | B;

– 28 –

Bit field implementation via structs

Use bit width specification in combination with struct

Give names to 1-bit members
struct {

 unsigned int is_keyword : 1;

 unsigned int is_extern : 1 ;

 unsigned int is_static : 1;

};

Data structure with three members, each one bit wide

 What is the size of the struct? 4 bytes

– 29 –

Embedded Assembly

– 30 –

Assembly in C

Motivation

Performance

Access to special processor instructions or registers
 (e.g. cycle counters)

Mechanisms specific to processor architecture (x86)
and compiler (gcc)

Must rewrite for other processors and compilers

Two forms

Basic: asm (code-string);

Extended:

 asm (code-string

 [: output-list

 [: input-list

 [: overwrite-list]]]);

– 31 –

Basic Inline Assembly

Implement ok_smul(int x, int y, int *dest)

 Calculate x*y and put result at dest

 Return 1 if multiplication does not overflow and 0 otherwise

Use setae instruction to get condition code

 setae D (D <- ~CF)

Strategy

 %eax stores return value

 Declare result and use it to store status code in %eax

int ok_smul1(int x, int y, int *dest)

{

 int result = 0;

 *dest = x*y;

 asm(“setae %al”);

 return result;

}

– 32 –

Basic Inline Assembly

Code does not work!

Return result in %eax

Want to set result using setae instruction beforehand

Compiler does not know you want to link these two
 (i.e. int result and %eax)

http://thefengs.com/wuchang/courses/cs201/class/12/ok_smul1

int ok_smul1(int x, int y, int *dest)

{

 int result = 0;

 *dest = x*y;

 asm(“setae %al”);

 return result;

}

– 33 –

Extended form asm

 asm (code-string

 [: output-list

 [: input-list

 [: overwrite-list]]]);

Allows you to bind registers to program values

Code-string

 Sequence of assembly separated by “;”

Output-list: get results from embedded assembly to C variables

 Tell assembler where to put result and what registers to use

 “=r” (x) : dynamically assign a register for output variable “x”

 Or use specific registers

• “=a” (x) : use %eax for variable x
 “+r” (x) : dynamically assign a register for both input and output

variable “x”

– 34 –

Extended form asm

 asm (code-string

 [: output-list

 [: input-list

 [: overwrite-list]]]);

Input-list: pass values from C variables to embedded assembly

 Tell assembler where to get operands and what registers to use

 “r” (x) : dynamically assign a register to hold variable “x”

 Or use specific registers

“a” (x) : read in variable x into %eax

Overwrite-list: to write to registers

 Tell assembler what registers will be overwritten in embedded code

 Allows assembler to

 Arrange to save data it had in those registers

 Avoid using those registers

– 35 –

Extended form asm

Code-string

 Assembly instructions

 Specific registers

 %%<register>

 Input and output operands
 %<digit>

 Ordered by output list, then
input list

Output list

 Assembler assigns a
register to store result

 Compiler adds code to save
register to memory

Overwrite list

 Compiler saves %ebx or
avoids using %ebx in code

int ok_smul3(int x, int y, int *dest)

{

 int result;

 *dest = x*y;

 /* Insert following assembly

 setae %bl

 movzbl %bl,result */

 asm(“setae %%bl; movzbl %%bl,%0”

 : “=r” (result)

 :

 : “%ebx”

);

 return result;

}

http://thefengs.com/wuchang/courses/cs201/class/12/ok_smul3

– 36 –

Extended form asm

Unsigned multiplication example

int ok_umul(unsigned x, unsigned y, unsigned *dest)

{

 int result;

 asm(“movl %2,%%eax; mull %3; movl %%eax,%0;

 setae %%dl; movzbl %%dl,%1”

 : “=r” (*dest), “=r” (result)

 : “r” (x), “r” (y)

 : “%eax”, “%edx”

);

 return result;

}

http://thefengs.com/wuchang/courses/cs201/class/12/ok_umul

/* movl x, %eax

 mull y

movl %eax, *dest

 setae %dl

 movzbl %dl, result */

– 37 –

Problem

What is the output of the following code?

#include <stdio.h>

int myasm(int x, int y) {

 int result;

 asm("movl %1,%%ebx; movl %2,%%ecx;

 sall %%cl,%%ebx; movl %%ebx,%0"

 : "=r" (result)

 : "r" (x), "r" (y)

 : "%ebx", "%ecx"

);

 return result;

}

main() {

 printf("%d\n", myasm(2,3));

}

http://thefengs.com/wuchang/courses/cs201/class/12/example_asm

– 38 –

Extended form asm

Something more useful

 rdtsc = read timestamp counter (Pentium)

 Reads 64-bit timestamp counter into %edx:%eax

 Accessed via asm

 Key code

http://thefengs.com/wuchang/courses/cs201/class/12/rdtsc.c

unsigned int lo, hi;

asm(“rdtsc” : “=a” (lo), “=d” (hi));

– 39 –

Exam practice

Chapter 3 Problems (Part 2)

3.18 C from x86 conds

3.20, 3.21 C from x86 (conditionals)

3.23 Cross x86 to C (loops)

3.24 C from x86 (loops)

3.28 Fill in C for loop from x86

3.30, 3.31 Switch case reverse engineering

3.32 Following stack in function calls

3.33 Function call params

3.35 Function call reversing

3.36, 3.37 Array element sizing

3.38 Array/Matrix dimension reversing

3.40 Refactor C Matrix computation to pointers

3.41, 3.44, 3.45 structs in assembly

3.58 C from assembly

3.62, 3.63 Full switch reverse engineering

3.65 Matrix dimension reversing

– 40 –

ARM

– 41 –

ARM history

Acorn RISC Machine (Acorn Computers, UK)

Design initiated 1983, first silicon 1985

 Licensing model allows for custom designs (contrast to x86)

• Does not produce their own chips

• Companies customize base CPU for their products

• PA Semiconductor (fabless, SoC startup acquired by

Apple for its A4 design that powers iPhone/iPad)

• ARM estimated to make $0.11 on each chip (royalties +

license)

Runs 98% of all mobile phones (2005)

• Per-watt performance currently better than x86

• Less “legacy” instructions to implement

– 42 –

ARM architecture

RISC architecture

 32-bit reduced instruction set machine inspired by Berkeley

RISC (Patterson, 1980-1984)

 Fewer instructions

• Complex instructions handled via multiple simpler ones

• Results in a smaller execution unit

Only loads/stores to and from memory

Uniform-size instructions

• Less decoding logic

• 16-bit in Thumb mode to increase code density

– 43 –

ARM architecture

ALU features

Conditional execution built into many instructions

• Less branches

• Less power lost to stalled pipelines

• No need for branch prediction logic

Operand bit-shifts supported in certain instructions

• Built-in barrel shifter in ALU

• Bit shifting plus ALU operation in one

Support for 3 operand instructions

• <R> = <Op1> OP <Op2>

– 44 –

ARM architecture

Control state features

Shadow registers (pre v7)

• Allows efficient interrupt processing (no need to save

registers onto stack)

• Akin to Intel hyperthreading

 Link register

• Stores return address for leaf functions (no stack

operation needed)

– 45 –

ARM architecture

Advanced features

SIMD (NEON) to compete with x86 at high end

• mp3, AES, SHA support

Hardware virtualization

• Hypervisor mode

 Jazelle DBX (Direct Bytecode eXecution)

• Native execution of Java

Security

• No-execute page protection

– Return2libc attacks still possible

• TrustZone

– Support for trusted execution via hardware-based

access control and context management

– e.g. isolate DRM processing

– 46 –

x86 vs ARM

Key architectural differences

CISC vs. RISC

• Legacy instructions impact per-watt performance

• Atom (stripped-down 80386 core)

– Once a candidate for the iPad until Apple VP

threatened to quit over the choice

State pushed onto stack vs. swapped from shadow registers

Bit shifting separate, explicit instructions vs. built-in shifts

Memory locations usable as ALU operands vs. load/store

only

Mostly 2 operand instructions (<D> = <D> OP <S>) vs. 3-

operand

– 47 –

ARM vs. x86

Other differences

 Intel is the only producer of x86 chips and designs

• No SoC customization (everyone gets same hardware)

• Must wait for Intel to give you what you want

• ARM allows Apple to differentiate itself

 Intel and ARM

• XScale: Intel's version of ARM sold to Marvell in 2006

• Speculation

– Leakage current will eventually dominate power

consumption (versus switching current)

– Intel advantage on process to make RISC/CISC moot

– Make process advantage bigger than custom design

+ RISC advantage (avoid wasting money on license)

– 48 –

Extra slides

– 49 –

Declared via typedef structs and pointers

 What does this code do?

typedef struct tnode *nptr;

typedef struct tnode {

 char *word;

 int count;

 nptr next;

} Node;

static nptr Head = NULL; // The head of a list

…

nptr np; // temporary variable

while (… something …){

 // Allocate a new node

 np = (nptr) malloc(sizeof(Node));

 // Do some kind of processing

 np->word = … something …;

 np->next = Head;

 Head = np;

}

Self-referential structures

– 50 –

struct rectangle * ptinrect(struct point p, struct rectangle *r, int n) {

int i;

for(i = 0; i < n; i++) {

 if(p.x >= r->pt1.x && p.x < r->pt2.x

 && p.y >= r->pt1.y && p.y < r->pt2.y)

 return r;

 r++;

}

return ((struct rectangle *)0);

}

Arrays of structures

Pointers/arrays for structures just like other data types

 Can use Rarray[idx] interchangeably with *(Rarray+idx)

 Are arrays of structures passed by value or reference?

struct rectangle * ptinrect(struct point p, struct rectangle *r, int n) {

 int i;

 for (i = 0; i < n; i++) {

 if (p.x >= r[i].pt1.x && p.x < r[i].pt2.x

 && p.y >= r[i].pt1.y && p.y < r[i].pt2.y)

 return(&r[i]);

` }

 return((struct rectangle *) 0);

}

struct rectangle Rarray[N];

ptinrect(p,Rarray,N);

– 51 –

Exercise

Given these variables:

struct {

 unsigned int is_keyword : 1;

 unsigned int is_extern : 1 ;

 unsigned int is_static : 1;

}flags1;

unsigned int flags2;

Write an expression that is true if the field is_static is set, using
the bit field notation on flags1, and also using bitwise operators
on flags2.

– 52 –

Accessing Elements within Array

 Compute offset from start of array

 Compute 12*i as 4*(i+2i)

 Access element according to its offset

within structure

 Offset by 8

 Assembler gives displacement as a + 8

a[0]

a+0

a[i]

a+12i

• • • • • •

short get_j(int idx)

{

 return a[idx].j;

}

%eax = idx

leal (%eax,%eax,2),%eax # 3*idx

movswl a+8(,%eax,4),%eax

a+12i a+12i+8

struct S6 {

 short i;

 float v;

 short j;

} a[10];

a[i].i a[i].j a[i].v

– 53 –

typedef union {

 float f;

 unsigned u;

} bit_float_t;

float bit2float(unsigned u)

{

 bit_float_t arg;

 arg.u = u;

 return arg.f;

}
u

f

0 4
unsigned float2bit(float f)

{

 bit_float_t arg;

 arg.f = f;

 return arg.u;

}

 Get direct access to bit

representation of float

 bit2float generates float with

given bit pattern

 NOT the same as (float) u

 float2bit generates bit pattern

from float

 NOT the same as (unsigned) f

Using Union to Access Bit Patterns

