
Exceptional Flow Control
Part I

– 2 –

<startup>

inst1

inst2

inst3

…

instn

<shutdown>

Physical control flow

Time

Control Flow

Computers do Only One Thing

 From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time.

 This sequence is the system’s physical control flow (or flow

of control).

– 3 –

Altering the Control Flow

Up to Now: two mechanisms for changing control flow:

 Jumps/branches

Call and return using the stack

Both react to changes in internal program state.

Insufficient for a useful system

Need CPU to react to changes in system state as well!

 data arrives from a disk or a network adapter.

 Instruction divides by zero

 User hits Ctrl-c at the keyboard

 System timer expires

System needs mechanisms for “exceptional control
flow”

– 4 –

Exceptional Control Flow

Mechanisms exist at all levels of a computer system

Change in control flow in response to a system event (i.e.,

change in system state)

Low level Mechanisms

1. Exceptions and interrupts
 Change in control flow in response to a system event

(i.e., change in system state)

 Implemented with a combination of hardware and OS software

Higher Level Mechanisms

2. Process context switch
 Implemented via hardware timer and OS software

3. Signals
 Implemented via OS

4. Nonlocal jumps (setjmp/longjmp)
 Implemented via C language runtime library

– 5 –

Exceptions and interrupts

– 6 –

Local/IO Bus

Memory
Network

adapter
IDE disk

controller

Video

adapter

Display Network

Processor
Interrupt

controller

SCSI

controller

SCSI bus

Serial port

controller

Parallel port

controller

Keyboard

controller

Keyboard Mouse Printer Modem

disk

disk CDROM

System context for exceptions

– 7 –

Exceptions and interrupts

Transfer of control to the OS in response to some event
(i.e., change in processor state)

 Require mode change from user to kernel/supervisor

 Example events: Divide by 0, arithmetic overflow, page fault,

I/O request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler
 • Return to I_current

•Return to I_next
•Abort

Event I_current
I_next

– 8 –

interrupt

vector

0
1

2 ...
n-1

code for

handler 0

code for

handler 1

code for

handler 2

code for

handler n-1

...

Exception

numbers

IDTR (Interrupt Descriptor
Table Register)

Interrupt Vectors

Many types of interrupts and exceptions

 Each type of event has a unique exception number k

 Index into jump table (a.k.a., interrupt vector table)

 Jump table entry k points to a function (exception handler).

 Handler k is called each time exception k occurs.

– 9 –

Asynchronous Exceptions
(Interrupts)
Caused by events external to the processor

 Indicated by setting the processor’s interrupt pin

 Causes a handler to run

 Handler returns to “next” instruction when finished

Examples:

 Timer interrupt

 Every few ms, an external timer triggers an interrupt

 Used by the kernel to take back control from user programs

 I/O interrupts

 hitting Ctrl-c at the keyboard

 arrival of a packet from a network

 arrival of a data sector from a disk

– 10 –

Synchronous Exceptions

Caused by events that occur as a result of executing an
instruction:

 Traps

 Intentional

 Examples: system calls, breakpoint traps, special instructions

 Returns control to “next” instruction

 Faults

 Unintentional but possibly recoverable

 Examples: page faults (recoverable), protection faults

(unrecoverable).

 Either re-executes faulting (“current”) instruction or aborts.

 Aborts

 unintentional and unrecoverable

 Examples: parity error, machine check.

 Aborts current program

– 11 –

Examples of x86-64 Exceptions

Exception Number Description Exception Class

0 Divide by zero Fault

13 General protection

fault

Fault

14 Page fault Fault

18 Machine check Abort

128 System call Trap

32-255 OS-defined

exceptions

Interrupt or trap

– 12 –

System Call

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

Synchronous exception calls into OS

 Implemented via int 0x80 or syscall instruction

 Each x86-64 system call has a unique ID number that is
passed in %rax

– 13 –

00000000000e5d70 <__open>:

...

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: 0f 05 syscall # Return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...

e5dfa: c3 retq

System Call trap example

Opening a File

 User calls: open(filename, options)

 Calls __open function, which invokes system call

instruction syscall

 Function __open executes system call instruction

 %rax contains syscall number (arguments in %rdi, %rsi,

%rdx, %r10, %r8, %r9)

 Negative value is an error corresponding to negative errno

 OS must find or create file, get it ready for reading or writing

 Returns integer file descriptor

– 14 –

00000000000e5d70 <__open>:

...

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: 0f 05 syscall # Return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...

e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

System Call Example: Opening File

– 15 –

int a[1000];

main ()

{

 a[500] = 13;

}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault

Copy page from

disk to memory
Return and

reexecute movl

movl

Fault Example #1

Memory Reference

User writes to memory location

 That portion (page) of user’s memory is

currently on disk

OS page handler must load page into physical

memory

Returns to faulting instruction

 Successful on second try

– 16 –

int a[1000];

main(){

 a[5000] = 13;

}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid

address

movl

Signal

process

Fault Example #2

Memory Reference

User writes to memory location

Address is not valid

OS page handler detects invalid address

 Sends SIGSEGV signal to user process

User process exits with “segmentation fault”

– 17 –

Exceptional Control Flow

Mechanisms exist at all levels of a computer system

Change in control flow in response to a system event (i.e.,

change in system state)

Low level Mechanisms

1. Exceptions and interrupts
 Change in control flow in response to a system event

(i.e., change in system state)

 Implemented with a combination of hardware and OS software

Higher Level Mechanisms

2. Process context switch
 Implemented via hardware timer and OS software

3. Signals
 Implemented via OS

4. Nonlocal jumps (setjmp/longjmp)
 Implemented via C language runtime library

– 18 –

Processes

– 19 –

CPU

Registers

Memory

Stack

Heap

Code

Data

Exceptions and Processes

Exceptions instrumental for process management

A process is an instance of a running program.

Process provides each program with two key
abstractions:

 Logical control flow

 Each program seems to have exclusive use of the CPU

 Provided by kernel mechanism called context switching

 Private address space

 Each program seems to have exclusive use of main

memory.

 Provided by kernel mechanism called virtual memory

How are these Illusions maintained?

 Process executions interleaved (multitasking)

Address spaces managed by virtual memory system

– 20 –

CPU runs many processes

Applications and background tasks (browsers, email,

network services)

Processes continually switch

When process needs I/O resource or timer event occurs

CPU runs one process at a time, but it appears to user(s)

as if all processes executing simultaneously

…

CPU

Registers

Memory

Stack

Heap

Code

Data

CPU

Registers

Memory

Stack

Heap

Code

Data

CPU

Registers

Memory

Stack

Heap

Code

Data

Multiprocessing: The Illusion

– 21 –

Multiprocessing

Running program “top”

 System has 254 processes

 Identified by Process ID (PID)

Tasks: 254 total, 1 running, 253 sleeping, 0 stopped, 0 zombie

%Cpu(s): 1.7 us, 1.6 sy, 0.0 ni, 96.4 id, 0.3 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem: 32890072 total, 32204380 used, 685692 free, 782968 buffers

KiB Swap: 33459196 total, 23372 used, 33435824 free. 14354472 cached Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 2375 wuchang 20 0 3175820 914904 864160 S 5.0 2.8 1601:26 VirtualBox

 8994 wuchang 20 0 1425804 126280 56668 S 4.6 0.4 0:07.72 chrome

 9035 wuchang 20 0 449308 64872 38552 S 3.0 0.2 0:02.72 chrome

25310 root 20 0 320724 119724 38060 S 2.3 0.4 127:30.36 Xorg

 9121 wuchang 20 0 903836 183412 26108 S 1.7 0.6 0:08.28 chrome

25783 wuchang 20 0 653192 31364 14136 S 1.0 0.1 6:23.03 gnome-term+

– 22 –

Multiprocessing: The Reality

Single processor executes multiple processes concurrently

 Process executions interleaved (multitasking)

 Address spaces managed by virtual memory system (later)

 Register values for nonexecuting processes saved in memory
(usually)

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

– 23 –

Multiprocessing: The Reality

Save current registers in memory

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

– 24 –

Multiprocessing: The Reality

Schedule next process for execution

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

– 25 –

Multiprocessing: The Reality

Load saved registers and switch address space (context
switch)

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

– 26 –

Multiprocessing: The Reality

Multicore processors

Multiple CPUs on single chip

 Share main memory (and some of

the caches)

 Each executes a separate process

 Scheduling of processors onto

cores done by kernel

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CPU

Registers

– 27 –

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Context Switching

Processes are managed by a shared chunk of memory-
resident OS code called the kernel

 Important: the kernel is not a separate process, but rather

runs as part of some existing process

Control flow passes from one process to another via a
context switch.

– 28 –

Process control in C

Basic Functions

 fork() spawns new process

 Called once, returns twice

 exit() terminates own process

 Called once, never returns

 Puts it into “zombie” status

 wait() and waitpid() wait for and reap terminated

children

 execl() and execve() run a new program in an existing

process

 Called once, (normally) never returns

– 29 –

Process terminates for one of three reasons:

Receiving a signal whose default action is to terminate

Returning from the main routine

Calling the exit function

void exit(int status)

 Terminates with an exit status of status

Convention: normal return status is 0, nonzero on error

Another way to explicitly set the exit status is to return an
integer value from the main routine

exit is called once but never returns.

Terminating Processes

– 30 –

Creating Processes

Parent process creates a new running child process
by calling fork

int fork(void)

Returns child’s process ID (PID) to parent process

Returns 0 to the child process,

Child is almost identical to parent

fork is interesting (and often confusing) because

it is called once but returns twice

– 31 –

Fork

Call once, return twice

Distinguish by return value of fork

Concurrent execution

Can’t predict execution order of parent and child

Duplicate, separate address spaces

 x has a value of 1 when fork returns in both parent and

child

 Subsequent changes to x are independent

Child gets identical copies of the parent’s open file

descriptors

 stdout same in both parent and child

Only differences

 Return value from fork different

 Child has a different PID than parent

– 32 –

if (fork() == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

What about errors?

– 33 –

System Call Error Handling

if ((pid = fork()) < 0) {

 fprintf(stderr, "fork error: %s\n", strerror(errno));

 exit(0);

}

On error, Unix system-level functions typically return -1
and set global variable errno to indicate cause.

Return status should be checked after every system-level

function

Example:

– 34 –

Error-handling wrappers

Can be simplified using wrappers:

pid_t Fork(void)

{

 pid_t pid;

 if ((pid = fork()) < 0)

 unix_error("Fork error");

 return pid;

}

pid = Fork();

void unix_error(char *msg) /* Unix-style error */

{

 fprintf(stderr, "%s: %s\n", msg, strerror(errno));

 exit(0);

}

– 35 –

void fork1() {

 int x = 1;

 pid_t pid = fork();

 if (pid == 0) {

 printf("Child has x = %d\n", ++x);

 } else {

 printf("Parent has x = %d\n", --x);

 }

 printf(“PID %d with x = %d\n", getpid(), x);

}

…

Parent has x = 0

PID 23223 with x = 0

Child has x = 2

PID 23224 with x = 2

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void); /* Get process ID */

pid_t getppid(void); /* Get parent process ID */

Fork Example #1

– 36 –

Graph visualization

 Time on x-axis

 Vertices are fork calls

Child spawned on y-axis

Child has x = 2

Parent has x = 0 (x=1)

void fork1() {

 int x = 1;

 pid_t pid = fork();

 if (pid == 0) {

 printf("Child has x = %d\n", ++x);

 } else {

 printf("Parent has x = %d\n", --x);

 }

 printf(“PID %d with x = %d\n", getpid(), x);

}

PID .. with x = 2

PID .. with x = 0

Fork Example #1

– 37 –

Both parent and child continue forking

void fork2()

{

 printf("L0\n");

 fork();

 printf("L1\n");

 fork();

 printf("Bye\n");

} L0 L1

L1

Bye

Bye

Bye

Bye

Fork Example #2

– 38 –

void fork3()

{

 printf("L0\n");

 fork();

 printf("L1\n");

 fork();

 printf("L2\n");

 fork();

 printf("Bye\n");

}
L0 L1

L1

L2

L2

L2

L2

Bye

Bye

Bye

Bye

Bye

Bye

Bye

Bye

Fork Example #3

Both parent and child continue forking

– 39 –

void fork4()

{

 printf("L0\n");

 if (fork() != 0) {

 printf("L1\n");

 if (fork() != 0) {

 printf("L2\n");

 fork();

 }

 }

 printf("Bye\n");

}

L0 L1

Bye

L2

Bye

Bye

Bye

Fork Example #4

Nested fork in parent

– 40 –

void fork5()

{

 printf("L0\n");

 if (fork() == 0) {

 printf("L1\n");

 if (fork() == 0) {

 printf("L2\n");

 fork();

 }

 }

 printf("Bye\n");

}

L0 Bye

L1

Bye

Bye

Bye

L2

Fork Example #5

Nested fork in child

– 41 –

void cleanup(void) {

 printf("cleaning up\n");

}

void fork6() {

 atexit(cleanup);

 fork();

 exit(0);

} cleaning up

cleaning up

Fork Example #6

atexit()

Registers a function to be executed upon exit

– 42 –

Consider the following program

What is the output of the child process?

What is the output of the parent process?

int main()

{

 int x = 1;

 if (fork() == 0)

 printf(“printf1: x=%d\n”,++x);

 printf(“printf2: x=%d\n”,--x);

 exit(0);

}

printf2: x=0

printf1: x=2

printf2: x=1

Practice problem 8.2

– 43 –

int main()

{

 int i;

 for (i = 0; i < 2; i++)

 fork();

 printf(“hello!\n”);

 exit(0);

}

4

Practice problem 8.11

Consider the following program

How many “hello” output lines does this program print?

– 44 –

void doit() {

 fork();

 fork();

 printf(“hello\n”);

 return;

}

int main()

{

 doit();

 printf(“hello\n”);

 exit(0);

}

8

Practice problem 8.12

Consider the following program

How many “hello” output lines does this program print?

– 45 –

Reaping Child Processes

When a child process terminates, it stays around and
consumes system resources until reaped by parent

Must keep its exit status to deliver to parent

Called a “zombie”

 Living corpse, half alive and half dead

Parent must “reap” terminated child

 Performed by parent on child via wait or waitpid

 Parent is given exit status information

Kernel then deletes zombie child process

What if Parent Doesn’t Reap?

Child zombie stays around

 If parent terminates without reaping a child, then child will be
reaped by init process

– 46 –

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6639 ttyp9 00:00:03 forks

 6640 ttyp9 00:00:00 forks <defunct>

 6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6642 ttyp9 00:00:00 ps

void fork7() {

 if (fork() == 0) {

 /* Child */

 printf("Terminating Child, PID = %d\n", getpid());

 exit(0);

 } else {

 printf("Running Parent, PID = %d\n", getpid());

 while (1)

 ; /* Infinite loop */

 }

}

ps shows zombie child

process as “defunct”

Killing parent allows child
to be reaped by init

Zombie
Example

– 47 –

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6676 ttyp9 00:00:06 forks

 6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6678 ttyp9 00:00:00 ps

Non-terminating Child Example
void fork8()

{

 if (fork() == 0) {

 /* Child */

 printf("Running Child, PID = %d\n“, getpid());

 while (1)

 ; /* Infinite loop */

 } else {

 printf("Terminating Parent, PID = %d\n”, getpid());

 exit(0);

 }

}

Child process still active even

though parent has terminated

Must kill explicitly, or else will keep

running indefinitely

– 48 –

wait: Synchronizing with children

Parent reaps a child by calling the wait function

int wait(int *child_status)

 Suspends current process until one of its children

terminates

Return value is the pid of the child process that terminated

 If child_status != NULL, then the set to a status indicating

why the child process terminated

Checked using macros defined in wait.h

 WIFEXITED, WEXITSTATUS, WIFSIGNALED, WTERMSIG,

 WIFSTOPPED, WSTOPSIG, WIFCONTINUED

 See textbook for details

– 49 –

Bye

HP

HC

CT Bye

void fork9() {

 int child_status;

 if (fork() == 0) {

 printf("HC: hello from child\n");

 } else {

 printf("HP: hello from parent\n");

 wait(&child_status);

 printf("CT: child has terminated\n");

 }

 printf("Bye\n");

}

wait: Synchronizing with children

– 50 –

void fork10() {

 pid_t pid[N];

 int i, child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0) {

 exit(100+i); /* Child */

 }

 for (i = 0; i < N; i++) { /* Parent */

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminate abnormally\n", wpid);

 }

} Child 3565 terminated with exit status 103

Child 3564 terminated with exit status 102

Child 3563 terminated with exit status 101

Child 3562 terminated with exit status 100

Child 3566 terminated with exit status 104

Wait Example
Arbitrary order when multiple children

 WIFEXITED macro to see if child exited normally

 WEXITSTATUS macro to get information about exit status

– 51 –

void fork11() {

 pid_t pid[N];

 int i;

 int child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)

 exit(100+i); /* Child */

 for (i = N-1; i >= 0; i--) {

 pid_t wpid = waitpid(pid[i], &child_status, 0);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminate abnormally\n", wpid);

 }

}

waitpid

pid_t waitpid(pid_t pid, int &status, int options)

 Suspends process until specific child terminates

– 52 –

Child 3565 terminated with exit status 103

Child 3564 terminated with exit status 102

Child 3563 terminated with exit status 101

Child 3562 terminated with exit status 100

Child 3566 terminated with exit status 104

Child 3572 terminated with exit status 104

Child 3571 terminated with exit status 103

Child 3570 terminated with exit status 102

Child 3569 terminated with exit status 101

Child 3568 terminated with exit status 100

Using wait (fork10)

Using waitpid (fork11)

wait/waitpid Examples

– 53 –

int main()

{

 if (fork() == 0)

 printf(“a”);

 else {

 printf(“b”);

 waitpid(-1,NULL,0);

 }

 printf(“c”);

 exit(0);

}

abcc, bacc, acbc
Can not have bcac!

Practice problem 8.3

Consider the following program

 List all possible output sequences of this program.

– 54 –

Consider the following program

How many output lines does this program generate?

What is one possible ordering of these output lines?

int main()

{

 int status;

 pid_t pid;

 printf(“Hello\n”);

 pid = fork();

 printf(“%d\n”, !pid);

 if (pid != 0) {

 if (waitpid(-1,&status,0) > 0) {

 if (WIFEXITED(status) != 0)

 printf(“%d\n”, WEXITSTATUS(status));

 }

 printf(“Bye\n”);

 exit(2);

}

6

Hello => 0 => 1 => Bye => 2 => Bye

Practice problem 8.4

– 55 –

Suspending processes

Two methods

sleep()

 Suspends a running process for a specified period of time

#include <unistd.h>

unsigned int sleep(unsigned int secs);

Returns 0 if the requested amount of time has elapsed

Returns the number of seconds still left to sleep otherwise

 Process can prematurely wakeup if interrupted by a signal

pause()

 Suspends a running process until a signal is received
#include <unistd.h>

int pause(void);

– 56 –

unsigned int snooze(unsigned int secs) {

}

 unsigned int rc = sleep(secs);

 printf(“Slept for %u of %u secs.\n”, secs-rc, secs);

 return rc;

Practice problem 8.5

Write a wrapper function for sleep() called snooze()
that behaves exactly as sleep() but prints out a

message describing how long the process actually
slept

– 57 –

Running new programs

fork creates an identical copy of a process

How can one run a new program not a duplicate of one?

– 58 –

execve: Loading and Running Programs

int execve(char *filename, char *argv[], char *envp[])

Loads and runs in current process

 Executable file filename

… with argument list argv

… and environment variable list envp

 “name=value” strings (e.g. SHELL=/bin/zsh)

Overwrites code, data, and stack

Retains only PID, open files, and signal context

Called once and never returns

… unless there is an error

– 59 –

envp[n] = NULL

envp[n-1]

envp[0]

…

myargv[argc] = NULL

myargv[2]

myargv[0]

myargv[1]

“/bin/ls”

“-lt”

“/usr/include”

“USER=w”

“PWD=/home/w”

environ

myargv

 if ((pid = Fork()) == 0) { /* Child runs program */

 if (execve(myargv[0], myargv, environ) < 0) {

 printf("%s: Command not found.\n", myargv[0]);

 exit(1);

 }

 }

(argc == 3)

execve Example

Executes “/bin/ls –lt /usr/include” in child

process using current environment

– 60 –

Structure of
the stack
when a new
program
starts

Null-terminated

environment variable strings

Null-terminated

command-line arg strings

envp[n] == NULL

envp[n-1]

...
envp[0]

argv[argc] = NULL

argv[argc-1]

...
argv[0]

Future stack frame for

main

environ

(global var)

Bottom of stack

Top of stack

argv

(in %rsi)

envp

(in %rdx)

Stack frame for

libc_start_main
argc

(in %rdi)

– 61 –

int main()

{

 int i;

 printf(“Command line arguments:\n”);

 for (i=0; argv[i] != NULL; i++)

 printf(“ argv[%2d]: %s\n”, i, argv[i]);

 printf(“\n”);

 printf(“Environment variables:\n”);

 for (i=0; envp[i] != NULL; i++)

 printf(“ envp[%2d]: %s\n”, i, envp[i]);

 exit(0);

}

Practice problem 8.6

Write a program called myecho that prints its command

line arguments and environment variables

– 62 –

Summarizing

Exceptions

 Events that require nonstandard control flow

Generated externally (interrupts) or internally (traps and

faults)

Processes

At any given time, system has multiple active processes

 Each process appears to have total control of processor +

private memory space

Only one can execute at a time, though

Process control

 Spawning (fork), terminating (exit), and reaping (wait)

processes

 Executing programs (exec)

– 63 –

Extra slides

– 64 –

envp

envp[n-1]

.
.
.

envp[0]

envp[1]

NULL

"PWD=/home/w"

"PRINTER=iron"

"USER=w"

envp[]

argv

argv[argc-1]

.
.
.

argv[0]

argv[1]

NULL

"ls"

"-lt"

"/usr/include"

argv[]

argv and envp

– 65 –

Environment variables

Strings that are specified as name-value pairs in the
form NAME=VALUE

 Type `printenv’ to see settings in the shell

 Some environment variables

 PATH : Path for finding commands

 LD_LIBRARY_PATH : Path for finding dynamic libraries

 USER : Name of user

 SHELL : Current shell

 HOSTNAME : Name of machine

 HOME : Path to user’s home directory

 PWD : Current directory

– 66 –

Environment variables

Setting up the environment within C

#include <stdlib.h>

char *getenv(const char *name);

int setenv(const char *name, const char

*newvalue, int overwrite);

void unsetenv(const char *name);

 getenv: Given a name, it returns a pointer to a string

containing its value or NULL if not set in environment

 setenv: Sets an environment variable pointed to by name

to a value pointed to by newvalue. Replaces the old value if

it exists, if overwrite field is non-zero

 unsetenv: Deletes an environment variable and its setting

– 67 –

kernel virtual memory

(code, data, heap, stack)

memory mapped region for

shared libraries

run-time heap

(managed by malloc)

user stack

(created at runtime)

unused
0

%esp (stack pointer)

memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

read/write segment

(.data, .bss)

read-only segment

(.init, .text, .rodata)

loaded from the

executable file

0xffffffff

Private Address Spaces

Each process has its own private address space.

– 68 –

Creating and Terminating Processes

From a programmer’s perspective, we can think of a
process as being in one of three states

Running

 Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

 Stopped

 Process is suspended and will not be scheduled until further

notice

 Terminated

 Process is stopped permanently

