
Exceptional Flow Control
Part II

– 2 –

ECF Exists at All Levels of a System

Exceptions

Hardware and operating system kernel software

Process Context Switch

Hardware timer and kernel software

Signals

Kernel software and application software

Nonlocal jumps

Application code

Previous Lecture

This Lecture

– 3 –

Shell Programs

A shell is an application program that runs programs on
behalf of the user.

int main()

{

 char cmdline[MAXLINE]; /* command line */

 while (1) {

 /* read */

 printf("> ");

 Fgets(cmdline, MAXLINE, stdin);

 if (feof(stdin))

 exit(0);

 /* evaluate */

 eval(cmdline);

 }

}

Execution is a
sequence of
read/evaluate steps

– 4 –

Shell operation

Commands typically run in foreground

 Shell waits until command finishes, then reaps it

Can place commands in the background

Running a web server

 httpd &

 Shell creates new process, but continues

 Can execute subsequent command without prior process

returning

– 5 –

Implementation of eval
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* Argument list execve() */
 char buf[MAXLINE]; /* Holds modified command line */
 int bg; /* Should the job run in bg or fg? */
 pid_t pid; /* Process id */

 strcpy(buf, cmdline);
 bg = parseline(buf, argv);
 if (argv[0] == NULL)
 return; /* Ignore empty lines */

 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* Child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 /* Parent waits for foreground job to terminate */
 if (!bg) {
 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else
 printf("%d %s", pid, cmdline);
 }
 return;
}

– 6 –

Problem with Simple Shell Example

Shell correctly waits for and reaps foreground jobs.

But what about background jobs?

Will become zombies when they terminate.

Will never be reaped because shell (typically) will not

terminate.

Creates a memory leak that will eventually crash the kernel

when it runs out of memory.

Solution: Reaping background jobs requires an alert
mechanism.

 The kernel will interrupt regular processing to alert us when

a background process completes

 In Unix, the alert mechanism is called a signal

– 7 –

Signals

A signal is a small message that notifies a process that
an event of some type has occurred in the system.

Kernel abstraction for exceptions and interrupts.

 Sent from the kernel (sometimes at the request of another
process) to a process.

Different signals are identified by small integer IDs (1-30)

– 8 –

Signal basics

Sending a signal

Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination

process.

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate &
Dump

Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

– 9 –

Signal basics

Receiving a signal

A destination process receives a signal when it is forced by

the kernel to react in some way to the delivery of the signal

Akin to a hardware exception handler being called in

response to an asynchronous interrupt.

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to

next instruction

Icurr
Inext

(1) Signal received
by process

– 10 –

Signal terminology

A signal is pending if it has been sent but not yet
received.

 There can be at most one pending signal of any particular type.

 Important: Signals are not queued

 If a process has a pending signal of type k, then subsequent

signals of type k that are sent to that process are discarded.

A process can block the receipt of certain signals.

Blocked signals can eventually be delivered, but will not be

received until the signal is unblocked.

A pending signal is received at most once!

– 11 –

Signal implementation

Kernel maintains pending and blocked bit vectors in

the context of each process.

 pending – represents the set of pending signals

 Kernel sets bit k in pending whenever a signal of type k is

delivered.

 Kernel clears bit k in pending whenever a signal of type k is

received

 blocked – represents the set of blocked signals

 Can be set and cleared by the application using the

sigprocmask function.

– 12 –

C interface

kill()

 Sends signal number sig to process pid if pid is greater

than 0

 Sends signal number sig to process group pid if pid is less

than 0

Returns 0 on success, -1 on error

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

– 13 –

Sending Signals with kill Function

void fork12()

{

 pid_t pid[N];

 int i;

 int child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0) {

 /* Child: Infinite Loop */

 while(1)

 ;

 }

 for (i = 0; i < N; i++) {

 printf("Killing process %d\n", pid[i]);

 kill(pid[i], SIGINT);

 }

 for (i = 0; i < N; i++) {

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

}

linux> ./sigint_nocatch

Killing process 18860

Killing process 18861

Killing process 18862

Killing process 18863

Killing process 18864

Killing process 18865

Killing process 18866

Killing process 18867

Killing process 18868

Killing process 18869

Child 18862 terminated abnormally

Child 18863 terminated abnormally

Child 18860 terminated abnormally

Child 18866 terminated abnormally

Child 18867 terminated abnormally

Child 18861 terminated abnormally

Child 18869 terminated abnormally

Child 18865 terminated abnormally

Child 18868 terminated abnormally

Child 18864 terminated abnormally

linux>

http://thefengs.com/wuchang/courses/cs201/class/17/sigint_nocatch

– 14 –

Receiving Signals

Kernel checks signals for a process p when it is ready
to pass control to it

Kernel computes pnb = pending & ~blocked

 The set of pending nonblocked signals for process p

if (pnb == 0)

 Pass control to next instruction in the logical flow for p.

else

Choose least significant nonzero bit k in pnb and force

process p to receive signal k.

 The receipt of the signal triggers some action by p

Repeat for all nonzero k in pnb.

 Pass control to next instruction in logical flow for p

– 15 –

Signal handling

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

– 16 –

Default Actions

Each signal type has a predefined default action, which
is one of:

 The process terminates

 The process terminates and dumps core.

 The process stops until restarted by a SIGCONT signal.

 The process ignores the signal.

– 17 –

Custom Signal Handlers

The signal function modifies the default action
associated with the receipt of signal signum:

 handler_t *signal(int signum, handler_t *handler)

Handler typically the address of a signal handler

 Called when process receives signal of type signum

 Referred to as “installing” the handler.

 Executing handler is called “catching” or “handling” the signal.

 When the handler executes its return statement, control passes

back to instruction of the process that was interrupted by receipt of

the signal.

– 18 –

Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */

{

 printf("So you think you can stop the bomb with ctrl-c, do you?\n");

 sleep(2);

 printf("Well...");

 fflush(stdout);

 sleep(1);

 printf("OK. :-)\n");

 exit(0);

}

int main()

{

 /* Install the SIGINT handler */

 if (signal(SIGINT, sigint_handler) == SIG_ERR)

 unix_error("signal error");

 /* Wait for the receipt of a signal */

 pause();

 return 0;

}

– 19 –

#include <stdlib.h>

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

int count = 5;

void handler(int sig) {

 printf("You think hitting ctrl-c works? %d more left!\n", count);

 count--;

 if (count == 0)

 exit(0);

}

int main() {

 signal(SIGINT, handler); /* installs ctrl-c handler */

 while (1) {}

}

Signal Handling Example

linux> ./sigint

^CYou think hitting ctrl-c works? 5 more left!

^CYou think hitting ctrl-c works? 4 more left!

^CYou think hitting ctrl-c works? 3 more left!

^CYou think hitting ctrl-c works? 2 more left!

^CYou think hitting ctrl-c works? 1 more left!

linux>

http://thefengs.com/wuchang/courses/cs201/class/17/sigint_count

– 20 –

Signal Handling Example

void int_handler(int sig) {

 printf("Process %d received signal %d\n",

 getpid(), sig);

 exit(0);

}

int main() {

 pid_t pid[N];

 int i, child_status;

 signal(SIGINT, int_handler);

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)

 while(1); /* Child infinite loop */

 /* Parent terminates the child processes */

 for (i = 0; i < N; i++) {

 printf("Killing process %d\n", pid[i]);

 kill(pid[i], SIGINT);

 }

 /* Parent reaps terminated children */

 for (i = 0; i < N; i++) {

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

}

linux> ./forks 13

Killing process 24973

Killing process 24974

Killing process 24975

Killing process 24976

Killing process 24977

Process 24977 received signal 2

Child 24977 terminated with exit status 0

Process 24976 received signal 2

Child 24976 terminated with exit status 0

Process 24975 received signal 2

Child 24975 terminated with exit status 0

Process 24974 received signal 2

Child 24974 terminated with exit status 0

Process 24973 received signal 2

Child 24973 terminated with exit status 0

linux>

http://thefengs.com/wuchang/courses/cs201/class/17/sigint_catch

– 21 –

Signal Handler Funkiness
int ccount = N;

void child_handler(int sig) {

 int child_status;

 pid_t pid;

 printf("In child handler\n");

 if ((pid = wait(&child_status)) > 0) {

 ccount--;

 printf("Received signal %d from process

%d\n", sig, pid);

 }

}

int main() {

 pid_t pid[N];

 int i;

 signal(SIGCHLD, child_handler);

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0) {

 /* Child: Exit */

 exit(0);

 }

 while (ccount > 0)

 pause();/* Suspend until signal occurs */

 exit(0);

}

Programmer wants
parent to “wait”
on each child
before exiting

Spot the bug

Suggest a fix

http://thefengs.com/wuchang/courses/cs201/class/17/sigchld_broken

– 22 –

Signal Handler Funkiness
int ccount = N;

void child_handler(int sig) {

 int child_status;

 pid_t pid;

 printf("In child handler\n");

 if ((pid = wait(&child_status)) > 0) {

 ccount--;

 printf("Received signal %d from process

%d\n", sig, pid);

 }

}

int main() {

 pid_t pid[N];

 int i;

 signal(SIGCHLD, child_handler);

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0) {

 /* Child: Exit */

 exit(0);

 }

 while (ccount > 0)

 pause();/* Suspend until signal occurs */

 exit(0);

}

Pending signals are not
queued

 Each signal type has a

single bit indicating

whether or not signal

is pending even if

multiple processes

have sent a signal

 Parent can hang

waiting for more

signals if two are

delivered at the same

time (and only one

wait is called in

handler)

Must check for all

terminated children

 Call wait in loop
http://thefengs.com/wuchang/courses/cs201/class/17/sigchld_broken

– 23 –

Signal Handler Funkiness
int ccount = N;

void child_handler(int sig) {

 int child_status;

 pid_t pid;

 printf("In child handler\n");

 while ((pid = waitpid(-1, &status, WNOHANG))> 0) {

 ccount--;

 printf("Received signal %d from process %d\n", sig, pid);

 }

}

int main() {

 pid_t pid[N];

 int i;

 signal(SIGCHLD, child_handler);

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0) {

 /* Child: Exit */

 exit(0);

 }

 while (ccount > 0)

 pause();/* Suspend until signal occurs */

 exit(0);

}

linux> ./sigchld_noq

In child handler

Received signal 17 from process 19415

In child handler

Received signal 17 from process 19416

Received signal 17 from process 19417

In child handler

Received signal 17 from process 19418

Received signal 17 from process 19419

In child handler

Received signal 17 from process 19420

Received signal 17 from process 19421

In child handler

Received signal 17 from process 19422

Received signal 17 from process 19423

In child handler

Received signal 17 from process 19424

linux>

http://thefengs.com/wuchang/courses/cs201/class/17/sigchld_noq

– 24 –

Alarm signal

Similar to sleep, but delivers a signal instead of
returning control to program

C interface
#include <unistd.h>

unsigned int alarm(unsigned int secs);

 Sends a SIGALRM signal to current process after a specified

time interval has elapsed

Returns remaining secs of previous alarm or 0 if no previous

alarm

– 25 –

Example

#include <stdio.h>

#include <signal.h>

int beeps = 0;

/* SIGALRM handler */

void handler(int sig) {

 printf("BEEP\n");

 fflush(stdout);

 if (++beeps < 5)

 alarm(1);

 else {

 printf("BOOM!\n");

 exit(0);

 }

}

main() {

 signal(SIGALRM, handler);

 alarm(1); /* send SIGALRM in

 1 second */

 while (1) {

 /* handler returns here */

 }

}

linux> a.out

BEEP

BEEP

BEEP

BEEP

BEEP

BOOM!

bass>

– 26 –

Chapter summary

Exceptions

Hardware and operating system kernel

software

Concurrent processes

Hardware timer and kernel software

Signals

Kernel software

– 27 –

Extra slides

– 28 –

Sending Signals: Process
Groups
Every process belongs to exactly one process

group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp()

 Return process group of current process

setpgid()

 Change process group of a process (see
text for details)

– 29 –

Sending Signals with /bin/kill

linux> ./forks 16

Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

 PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> /bin/kill -9 -24817

linux> ps

 PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24823 pts/2 00:00:00 ps

linux>

/bin/kill program

sends arbitrary signal
to a process or
process group

Examples

/bin/kill –9 24818

Send SIGKILL to

process 24818

/bin/kill –9 –24817

Send SIGKILL to every

process in process

group 24817

– 30 –

Sending Signals from the Keyboard

Typing ctrl-c (ctrl-z) sends a SIGINT (SIGSTP) to every job in the
foreground process group.

 SIGTERM – default action is to terminate each process

 SIGSTOP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

– 31 –

Example of ctrl-c and ctrl-z

linux> ./forks 17

Child: pid=24868 pgrp=24867

Parent: pid=24867 pgrp=24867

 <typed ctrl-z>

Suspended

linux> ps a

 PID TTY STAT TIME COMMAND

24788 pts/2 S 0:00 -usr/local/bin/tcsh -i

24867 pts/2 T 0:01 ./forks 17

24868 pts/2 T 0:01 ./forks 17

24869 pts/2 R 0:00 ps a

bass> fg

./forks 17

<typed ctrl-c>

linux> ps a

 PID TTY STAT TIME COMMAND

24788 pts/2 S 0:00 -usr/local/bin/tcsh -i

24870 pts/2 R 0:00 ps a

STAT (process state)
Legend:
 S: sleeping
 T: stopped
 R: running

– 32 –

Blocking and Unblocking Signals

Implicit blocking mechanism

Kernel blocks any pending signals of type currently being

handled.

E.g., A SIGINT handler can’t be interrupted by another SIGINT

Explicit blocking and unblocking mechanism

sigprocmask function

Supporting functions

sigemptyset – Create empty set

sigfillset – Add every signal number to set

sigaddset – Add signal number to set

sigdelset – Delete signal number from set

– 33 –

Temporarily Blocking
Signals

 sigset_t mask, prev_mask;

 Sigemptyset(&mask);

 Sigaddset(&mask, SIGINT);

 /* Block SIGINT and save previous blocked set */

 Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

 /* Code region that will not be interrupted by SIGINT */

 /* Restore previous blocked set, unblocking SIGINT */

 Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

– 34 –

Safe Signal Handling

Handlers are tricky because they are concurrent with
main program and share the same global data
structures.

Shared data structures can become corrupted.

We’ll explore concurrency issues later in the term.

For now here are some guidelines to help you avoid
trouble.

– 35 –

Guidelines for Writing Safe
Handlers
G0: Keep your handlers as simple as possible

e.g., Set a global flag and return

G1: Call only async-signal-safe functions in your handlers
printf, sprintf, malloc, and exit are not safe!

G2: Save and restore errno on entry and exit
So that other handlers don’t overwrite your value of errno

G3: Protect accesses to shared data structures by
temporarily blocking all signals.
To prevent possible corruption

G4: Declare global variables as volatile
To prevent compiler from storing them in a register

G5: Declare global flags as volatile sig_atomic_t
flag: variable that is only read or written (e.g. flag = 1, not flag++)

Flag declared this way does not need to be protected like other
globals

– 36 –

Async-Signal-Safety

Function is async-signal-safe if either reentrant (e.g., all variables
stored on stack frame, CS:APP3e 12.7.2) or non-interruptible by
signals.

Posix guarantees 117 functions to be async-signal-safe

Source: “man 7 signal”

Popular functions on the list:

_exit, write, wait, waitpid, sleep, kill

Popular functions that are not on the list:

printf, sprintf, malloc, exit

Unfortunate fact: write is the only async-signal-safe output function

– 37 –

Safely Generating Formatted
Output
Use the reentrant SIO (Safe I/O library) from csapp.c in

your handlers.

ssize_t sio_puts(char s[]) /* Put string */

ssize_t sio_putl(long v) /* Put long */

void sio_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */

{

 Sio_puts("So you think you can stop the bomb with ctrl-

c, do you?\n");

 sleep(2);

 Sio_puts("Well...");

 sleep(1);

 Sio_puts("OK. :-)\n");

 _exit(0);

}

 sigintsafe.c

– 38 –

Pending signals are
not queued

For each signal type,

one bit indicates

whether or not signal

is pending…

…thus at most one

pending signal of any

particular type.

 You can’t use
signals to count
events, such as
children terminating.

int ccount = 0;

void child_handler(int sig) {

 int olderrno = errno;

 pid_t pid;

 if ((pid = wait(NULL)) < 0)

 Sio_error("wait error");

 ccount--;

 Sio_puts("Handler reaped child ");

 Sio_putl((long)pid);

 Sio_puts(" \n");

 sleep(1);

 errno = olderrno;

}

void fork14() {

 pid_t pid[N];

 int i;

 ccount = N;

 Signal(SIGCHLD, child_handler);

 for (i = 0; i < N; i++) {

 if ((pid[i] = Fork()) == 0) {

 Sleep(1);

 exit(0); /* Child exits */

 }

 }

 while (ccount > 0) /* Parent spins */

 ;

}

forks.c

whaleshark> ./forks 14

Handler reaped child 23240

Handler reaped child 23241

Correct Signal
Handling

– 39 –

Correct Signal Handling

Must wait for all terminated child processes

Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{
 int olderrno = errno;
 pid_t pid;
 while ((pid = wait(NULL)) > 0) {
 ccount--;
 Sio_puts("Handler reaped child ");
 Sio_putl((long)pid);
 Sio_puts(" \n");
 }
 if (errno != ECHILD)
 Sio_error("wait error");
 errno = olderrno;
}

whaleshark> ./forks 15

Handler reaped child 23246

Handler reaped child 23247

Handler reaped child 23248

Handler reaped child 23249

Handler reaped child 23250

whaleshark>

– 40 –

Portable Signal Handling
Ugh! Different versions of Unix can have different

signal handling semantics

Some older systems restore action to default after catching

signal

Some interrupted system calls can return with errno == EINTR

Some systems don’t block signals of the type being handled

Solution: sigaction
handler_t *Signal(int signum, handler_t *handler)

{

 struct sigaction action, old_action;

 action.sa_handler = handler;

 sigemptyset(&action.sa_mask); /* Block sigs of type being handled */

 action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

 if (sigaction(signum, &action, &old_action) < 0)

 unix_error("Signal error");

 return (old_action.sa_handler);

}

csapp.c

– 41 –

Synchronizing Flows to Avoid Races

int main(int argc, char **argv)

{

 int pid;

 sigset_t mask_all, prev_all;

 Sigfillset(&mask_all);

 Signal(SIGCHLD, handler);

 initjobs(); /* Initialize the job list */

 while (1) {

 if ((pid = Fork()) == 0) { /* Child */

 Execve("/bin/date", argv, NULL);

 }

 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */

 addjob(pid); /* Add the child to the job list */

 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

 }

 exit(0);

}

Simple shell with a subtle synchronization error
because it assumes parent runs before child.

procmask1.c

– 42 –

Synchronizing Flows to Avoid Races

void handler(int sig)

{

 int olderrno = errno;

 sigset_t mask_all, prev_all;

 pid_t pid;

 Sigfillset(&mask_all);

 while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */

 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

 deletejob(pid); /* Delete the child from the job list */

 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

 }

 if (errno != ECHILD)

 Sio_error("waitpid error");

 errno = olderrno;

}

SIGCHLD handler for a simple shell

procmask1.c

– 43 –

Corrected Shell Program without
Race

int main(int argc, char **argv)

{

 int pid;

 sigset_t mask_all, mask_one, prev_one;

 Sigfillset(&mask_all);

 Sigemptyset(&mask_one);

 Sigaddset(&mask_one, SIGCHLD);

 Signal(SIGCHLD, handler);

 initjobs(); /* Initialize the job list */

 while (1) {

 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */

 if ((pid = Fork()) == 0) { /* Child process */

 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

 Execve("/bin/date", argv, NULL);

 }

 Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */

 addjob(pid); /* Add the child to the job list */

 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

 }

 exit(0);

}

procmask2.c

– 44 –

Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)

{

 int olderrno = errno;

 pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */

 errno = olderrno;

}

void sigint_handler(int s)

{

}

Handlers for program explicitly waiting for SIGCHLD to
arrive.

waitforsignal.c

– 45 –

Explicitly Waiting for Signals
int main(int argc, char **argv) {

 sigset_t mask, prev;

 Signal(SIGCHLD, sigchld_handler);

 Signal(SIGINT, sigint_handler);

 Sigemptyset(&mask);

 Sigaddset(&mask, SIGCHLD);

 while (1) {

 Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

 if (Fork() == 0) /* Child */

 exit(0);

 /* Parent */

 pid = 0;

 Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

 /* Wait for SIGCHLD to be received (wasteful!) */

 while (!pid)

 ;

 /* Do some work after receiving SIGCHLD */

 printf(".");

 }

 exit(0);

}

waitforsignal.c

Similar to a shell waiting
for a foreground job to

terminate.

– 46 –

Explicitly Waiting for Signals

while (!pid) /* Race! */

 pause();

Program is correct, but very wasteful

Other options:

Solution: sigsuspend

while (!pid) /* Too slow! */

 sleep(1);

– 47 –

Waiting for Signals with
sigsuspend

sigprocmask(SIG_BLOCK, &mask, &prev);

pause();

sigprocmask(SIG_SETMASK, &prev, NULL);

int sigsuspend(const sigset_t *mask)

Equivalent to atomic (uninterruptable) version of:

– 48 –

Waiting for Signals with
sigsuspend
int main(int argc, char **argv) {

 sigset_t mask, prev;

 Signal(SIGCHLD, sigchld_handler);

 Signal(SIGINT, sigint_handler);

 Sigemptyset(&mask);

 Sigaddset(&mask, SIGCHLD);

 while (1) {

 Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */

 if (Fork() == 0) /* Child */

 exit(0);

 /* Wait for SIGCHLD to be received */

 pid = 0;

 while (!pid)

 Sigsuspend(&prev);

 /* Optionally unblock SIGCHLD */

 Sigprocmask(SIG_SETMASK, &prev, NULL);

 /* Do some work after receiving SIGCHLD */

 printf(".");

 }

 exit(0);

}

sigsuspend.c

– 49 –

Nonlocal Jumps: setjmp/longjmp

Powerful (but dangerous) user-level mechanism for transferring
control to an arbitrary location.

 Controlled way to break the procedure call/return discipline

 Useful for error recovery and signal handling

int setjmp(jmp_buf j)

 Must be called before longjmp

 Identifies a return site for a subsequent longjmp.

 Called once, returns one or more times

Implementation:

 Remember where you are by storing the current register context,
stack pointer, and PC value in jmp_buf.

 Return 0

– 50 –

setjmp/longjmp (cont)

void longjmp(jmp_buf j, int i)

Meaning:

 return from the setjmp remembered by jump buffer j again...

 …this time returning i instead of 0

Called after setjmp

Called once, but never returns

longjmp Implementation:

Restore register context from jump buffer j

 Set %eax (the return value) to i

 Jump to the location indicated by the PC stored in jump buf j.

– 51 –

setjmp/longjmp Example

#include <setjmp.h>

jmp_buf buf;

main() {

 if (setjmp(buf) != 0) {

 printf("back in main due to an error\n");

 else

 printf("first time through\n");

 p1(); /* p1 calls p2, which calls p3 */

}

...

p3() {

 <error checking code>

 if (error)

 longjmp(buf, 1)

}

– 52 –

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include <stdio.h>

#include <signal.h>

#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig) {

 longjmp(buf, 1);

}

main() {

 signal(SIGINT, handler);

 if (setjmp(buf)==0)

 printf("starting\n");

 else

 printf("restarting\n");

while(1) {

 sleep(1);

 printf("processing...\n");

 }

}

bass> a.out

starting

processing...

processing...

restarting

processing...

processing...

processing...

restarting

processing...

restarting

processing...

processing...

Ctrl-c

Ctrl-c

Ctrl-c

– 53 –

Limitations of Nonlocal Jumps
Works within stack discipline

Can only long jump to environment of function that has been

called but not yet completed

Good: P1's stack frame still valid

jmp_buf env;

P1()

{

 if (setjmp(env)) {

 /* Long Jump to here */

 } else {

 P2();

 }

}

P2()

{ . . . P2(); . . . P3(); }

P3()

{

 longjmp(env, 1);

}

P1

P2

P2

P2

P3

env

P1

Before longjmp

After longjmp

– 54 –

Limitations of Long Jumps (cont.)
Works within stack discipline

Can only long jump to environment of function that has been

called but not yet completed

Bad: Need P2's stack frame to be valid!

jmp_buf env;

P1()

{

 P2(); P3();

}

P2()

{

 if (setjmp(env)) {

 /* Long Jump to here */

 }

}

P3()

{

 longjmp(env, 1);

}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env

X

– 55 –

Summary

Signals provide process-level exception handling

Can generate from user programs

Can define effect by declaring signal handler

Some caveats

 Very high overhead

 >10,000 clock cycles

 Only use for exceptional conditions

Don’t have queues

 Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow within
process

Within constraints of stack discipline

