
A Combination Lock
Bart Massey
2016-02-25

We want a combination lock that will accept a code consisting of three numbers in a specified range and then
allow the unlock button to unlock the door. Any error should cause the lock to reset.

CODE == 0 . . 35

We will treat the combination as fixed.

combination : seqCODE

combination = 3

The last turn direction of the lock will be important. We can either have turned left (counter-clockwise) or right
(clockwise).

DIRECTION ::= left | right

Turn
code : CODE
direction : DIRECTION

We will keep track of the last position and direction of the dial. When the device is turned on, we don’t know
where the dial was.

HISTORY ::= unsetted | setted〈〈Turn〉〉

The state of the lock consists of the current position of the dial, the number of digits solved so far, and the last
direction turned.

Lock
solved : 0 . . # combination
from : HISTORY

The starting state of the lock has no solved digits, and has not been turned yet. [We will use this schema primed,
so we do not prime it here.]

Init
Lock

solved = 0
from = unsetted

Our initial turn should be to the left. A right turn resets the lock.

StartLeft
∆Lock
turn? : Turn

from = unsetted
solved ′ = 0
(turn?.direction = left ∧ from ′ = setted(turn?)) ∨
(turn?.direction = right ∧ from ′ = unsetted)

1

The normal operation is to accept a turn in the opposite of the previous direction to a position. If the position
and direction are the correct next code in the combination, the user has solved the code and moves to the next.

SuccessfulTurn
∆Lock
turn? : Turn

∀ f : Turn | setted(f) = from •
(turn?.direction 6= f .direction) ∧
(f .code = combination(solved + 1))

solved ′ = solved + 1
from ′ = setted(turn?)

If the user keeps spinning in the direction they have been previously spinning, we assume that they are not done
entering this number yet, and we ignore the spin. We allow the user to spin multiple full turns before stopping
on the correct number.

PartialTurn
∆Lock
turn? : Turn

∀ f : Turn | setted(f) = from •
turn?.direction = f .direction

solved ′ = solved
from ′ = setted(turn?)

If the user turns in the opposite direction from the wrong position, we reset the lock.

WrongTurn
∆Lock
Init
turn? : Turn

∀ f : Turn | setted(f) = from •
(turn?.direction 6= f .direction) ∧
(turn?.code 6= combination(solved + 1))

If we finish the last digit we are done.

Done
Lock

solved = # combination

The overall behavior of the lock is to start reset, and to become more solved or reset until all the digits have
been solved.

CombinationLock == Init ′ # StartLeft ∨ PartialTurn ∨ SuccessfulTurn ∨WrongTurn # Done

2

