
Requirements gathering 
and specification

PSU CS 300

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>



Notes

● Responsible for both 
course text and lectures

● Sadly, not enough time for 
everything

● We'll try to do more 
practice in class



User requirements

● “What”, not “how”
● Basis for

– clean design
– user validation
– system test

● Connect domain to SW



Function vs hard stuff

● Function is easy
– The input/output model

● State is hard
– Breaks the model

● Ilities are hard
– Outside the model



Work product:
Numbered pars

● Reqs / spec / arch split 
varies by dev org

● All produce SRS-type doc
– Hierarchically numbered 

English pars with succinct, 
careful statements

– Some formal language: 
“may”/“should”/“shall”



Modes: User-visible state

● Modes are bad, but often 
are unavoidable

● Much SRS complexity is 
tracking modal behavior
– Magic notation helps
– e.g. Leveson TCAS work



Prototypes

● To gain knowledge
– of user reqs
– of design properties

● Reusable vs discardable
● vs Increment/Iterate dev

– Spiral model
– Open source



The open source way

● No SRS or formal process
● Highly incremental / spiral
● Relies on

– developer-customers
– comms infrastructure

● Code as SRS



Good reqs checklist

– User-
friendly

– “What” not 
“how”

– Valid
– Sound & 

complete

– Brief
– Precise
– Traceable
– Modifiable
– Testable
– Feasible



Top concerns

● V&V
– Test oracle
– Inspection target
– Formal methods assertions

● If you don't know what 
you're building, your 
process is doomed



Requirements gathering 
and specification

PSU CS 300

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>



Notes

● Responsible for both 
course text and lectures

● Sadly, not enough time for 
everything

● We'll try to do more 
practice in class



User requirements

● “What”, not “how”
● Basis for

– clean design
– user validation
– system test

● Connect domain to SW



Function vs hard stuff

● Function is easy
– The input/output model

● State is hard
– Breaks the model

● Ilities are hard
– Outside the model



Work product:
Numbered pars

● Reqs / spec / arch split 
varies by dev org

● All produce SRS-type doc
– Hierarchically numbered 

English pars with succinct, 
careful statements

– Some formal language: 
“may”/“should”/“shall”



Modes: User-visible state

● Modes are bad, but often 
are unavoidable

● Much SRS complexity is 
tracking modal behavior
– Magic notation helps
– e.g. Leveson TCAS work



Prototypes

● To gain knowledge
– of user reqs
– of design properties

● Reusable vs discardable
● vs Increment/Iterate dev

– Spiral model
– Open source



The open source way

● No SRS or formal process
● Highly incremental / spiral
● Relies on

– developer-customers
– comms infrastructure

● Code as SRS



Good reqs checklist

– User-
friendly

– “What” not 
“how”

– Valid
– Sound & 

complete

– Brief
– Precise
– Traceable
– Modifiable
– Testable
– Feasible



Top concerns

● V&V
– Test oracle
– Inspection target
– Formal methods assertions

● If you don't know what 
you're building, your 
process is doomed


