Yacht: A Yahtzee Variant

Bart Massey
29 March 2016

1 Introduction

Yahtzee is a game played with five dice. We will describe a variant of Yahtzee known as Yacht. Yacht is an older game (https://en.wikipedia.org/wiki/Yacht_(dice_game)) with slightly simpler rules.

Yacht is built around a scoresheet. A scoresheet holds scores for various entries (combinations of dice in a die roll). The scoresheet can be filled in in any order.

```
POSN == 1 ..5
FACE == 1.. 6
ENTRY ::= ks \\FACE\rangle\rangle | full_house | four_of_a_kind |
    little_straight | big_straight | choice | yacht
```

— Scoresheet
scoresheet : ENTRY $\rightarrow \mathbb{N}$

A Yacht game starts with an empty scoresheet.

```
InitYah
    Scoresheet
    scoresheet = \varnothing
```

We will describe a roll of five dice in terms of the values on each of the five top faces.

$$
\begin{aligned}
& R O L L: \mathbb{P} \text { seq } F A C E \\
& \forall r: R O L L \\
& \\
& \operatorname{dom} r=P O S N
\end{aligned}
$$

The sum of the range values of a binary relation will be useful throughout this specification. It should arguably be part of the toolkit-oh well.

```
\(=[X]\)
    sum_range : \((X \leftrightarrow \mathbb{Z}) \rightarrow \mathbb{Z}\)
    sum_range \((\varnothing)=0\)
    \(\forall x: X ; n: \mathbb{Z} ; x n s: X \leftrightarrow \mathbb{Z} \bullet\)
        \(\operatorname{sum} \_\operatorname{range}(\{x \mapsto n\} \cup x n s)=n+\operatorname{sum} \_\)range \((x n s)\)
```


2 Scoring

We will describe the scores of Yacht entries for now in terms of a scoring function. For a given category, the scoring function assigns a positive score if the roll mets the category description, and assigns a zero score otherwise.

To score a roll as Aces, Twos, Threes etc, we sum the faces with the designated value.

```
SCORE == ENTRY }\timesROLL H\mathbb{N
score_ks : SCORE
    score_ks={k:FACE; r:ROLL\bullet
        (ks(k),r)\mapstosum\_range(r\triangleright {k})}
```

To score a roll as a Full House, we give it the sum of all its faces if three of the faces match and the two remaining faces also match; zero otherwise. Yacht may be scored as a Full House.

zero $: E N T R Y \rightarrow S C O R E$
$\forall e: E N T R Y \bullet z e r o(e)=\{r: R O L L \bullet(e, r) \mapsto 0\}$

```
score_full_house : SCORE
    score_full_house \(=\) zero \((\) full_house \() \oplus\{r: R O L L ; x: \mathbb{P}\) POSN \(\mid\)
        \(\# x=3 \wedge \#(r \backslash x \emptyset)=1 \wedge \#(r \backslash P O S N \backslash x \emptyset)=1 \bullet\)
    (full_house, \(r\) ) \(\mapsto\) sum_range \((r)\}\)
```

To score a roll as Four of a Kind, we give it a score equal to the sum of its matching faces if there are at least four matching faces, and zero otherwise. A Yacht may be scored as a Four of a Kind, but receives points only for four of the faces.

```
score_four_of_a_kind : SCORE
    score_four_of_a_kind \(=\) zero \((\) four_of_a_kind \() \oplus\{r: R O L L ; x: \mathbb{P} P O S N \mid\)
    \(\# x=4 \wedge \#(r(x))=1 \bullet\)
    \((\) four_of_a_kind,\(\left.r) \mapsto s u m \_r a n g e(x \triangleleft r)\right\}\)
```

To score a roll as a Little Straight (a better name would be Low Straight), we give it 30 points iff its faces in some order are 1.. 5 .

```
score_little_straight : SCORE
    score_little_straight \(=z e r o\left(l i t t l e \_s t r a i g h t\right) ~ \oplus\{r: R O L L \mid \operatorname{ran}(r)=1 . .5 \bullet\)
    (little_straight, \(r\) ) \(\mapsto 30\}\)
```

To score a roll as a Big Straight (a better name would be High Straight), we give it 30 points iff its faces in some order are 2.. 6 .

```
score_big_straight : SCORE
    score_big_straight =zero (big_straight ) }\oplus{r:ROLL| ran (r)=2.. 6\bullet
    (big_straight,r)\mapsto30}
```

To score a roll as Choice, we score it as the sum of its faces.

```
score_choice : SCORE
    score_choice }={r:ROLL\bullet(choice,r)\mapstosum_range (r)
```

To score a roll as Yacht, we give it 50 points if all five dice are the same and 0 points otherwise.

```
score_yacht : SCORE
    score_yacht =zero (yacht)}\oplus{r:ROLL|#\operatorname{ran}(r)=1\bullet(yacht,r)\mapsto50
```

The overall score is simply the score obtained by filling in the value of the given roll at the given entry.

```
    score : ENTRY }\timesROLL->\mathbb{N
    score =score_ks \cupscore_full_house Uscore_four_of_a_kind U
    score_little_straight U score_big_straight }
    score_choice U score_yacht
```


3 Play

A turn in Yacht consists of rolling five dice, possibly rerolling once or twice, selecting an entry that matches the final roll, and filling in the scoresheet with the score of that match. An alternative is always to fill in a zero score in any scoresheet entry.

```
- Dice
```

\qquad

```
    roll : ROLL
    count: \(\mathbb{N}\)
    count \(\leq 2\)
```

At the start of each turn, an initial roll is made.

```
_InitTurn
    Dice'
    \XiScoresheet
    roll?: ROLL
    dom scoresheet \subset ENTRY
    roll'}=\mathrm{ roll?
    count' = 2
```

Once the initial roll has been made, the player may select any of the five dice to reroll. This can happen up to twice. Another way to look at it is that the player must twice reroll some subset of the dice, but may choose to reroll none. We will adopt this view, which leads to an easier description.

```
Reroll
    \(\Delta\) Dice
    \(\Xi\) Scoresheet
    replace? : POSN \(\rightarrow\) FACE
    count \(>0\)
    count \({ }^{\prime}=\) count -1
    roll \({ }^{\prime}=\) roll \(\oplus\) replace ?
```

When the rerolls are complete, the player selects an empty entry to fill in with the score.

```
EndTurn
    Dice
    \DeltaScoresheet
    choice?: ENTRY
    count = 0
    choice? & dom scoresheet
    scoresheet' = scoresheet }\cup{\mathrm{ choice? }\mapsto\mathrm{ score(choice?, roll)}
```

When all scoresheet entries are filled in, the game is over, and the score is the sum of the values of scoresheet entries.

```
EndYah
    Scoresheet
    final_score!: N
    dom scoresheet = ENTRY
    final_score! = sum_range(scoresheet)
```

The game is played from beginning to end.

YahGame $==$ InitYah ${ }_{9}^{\circ}\left(\right.$ InitTurn ${ }_{9}^{\circ}$ Reroll \vee EndTurn $) \vee$ EndYah

