
Solving Sudoku via SAT
Bart Massey
12 April 2016

In this document, we describe the construction of a Sudoku solver that operates in three phases: construction
of a prop CNF SAT instance from the Sudoku instance, use of a SAT solver to solve the SAT instance, and
extracting the solution to the Sudoku instance from the SAT solution. The constructor and extractor are written
in Python, and off-the-shelf SAT solvers are used. Runtimes are very fast independent of problem “difficulty”,
on the order of 150 milliseconds on the author’s desktop box.

1 Solving Sudoku

This section describes the properties of a Sudoku solution. It is written using the Z specification notation for
precision and clarity. It is assumed that the reader is at least familiar with the Sudoku grid.

We begin by describing some of the sizes and dimensions relevant to the problem.

SQUARE == 3
SIDE == SQUARE ∗ SQUARE
ROW == 1 . . SIDE
COL == 1 . . SIDE
VALUE == 1 . . SIDE

An important concept in Sudoku is the “sub-board” or “group”. It is important to know what coordinate group
a given coordinate is in.

group : 1 . . SIDE → 1 . . SQUARE

∀ x : 1 . . SIDE •
group(x ) = (x − 1) div SQUARE + 1

There are basically three constraints on a partial Sudoku solution: the same value cannot appear twice within
a row; the same value cannot appear twice within a column; the same value cannot appear twice within a
sub-board.

1



Sudoku
board : ROW × COL 7→VALUE

∀ r : ROW ; c1, c2 : COL |
c1 6= c2 ∧
(r , c1) ∈ dom(board) ∧ (r , c2) ∈ dom(board) •

board(r , c1) 6= board(r , c2)

∀ r1, r2 : ROW ; c : COL |
r1 6= r2 ∧
(r1, c) ∈ dom(board) ∧ (r2, c) ∈ dom(board) •

board(r1, c) 6= board(r2, c)

∀ r1, r2 : ROW ; c1, c2 : COL |
(r1, c1) 6= (r2, c2) ∧
(r1, c1) ∈ dom(board) ∧ (r2, c2) ∈ dom(board) ∧
group(r1) = group(r2) ∧ group(c1) = group(c2) •

board(r1, c1) 6= board(r2, c2)

A solution to a Sudoku instance is a total assignment of values to squares of the instance that respects the initial
partial assignment and the legality constraints.

SolveSudoku
problem? : Sudoku

solution! : Sudoku

problem?.board ⊆ solution!.board

solution!.board ∈ ROW × COL→VALUE

2 Prop. CNF SAT Instance Extraction

The logical description of the previous section greatly facilitates reducing a Sudoku instance to a Prop. CNF
SAT instance whose solution gives a solution to the Sudoku instance.

We will represent the board relation using atoms of the form Brcv which will be interpreted as true iff the
board at row r and column c has value v . There are 93 = 729 such atoms. We will establish a series of
constraints, extracted from the Z specification, that together ensure that any satisfying assignment to the Bs
will be interpretable as a solution to the Sudoku instance.

1. We require that the solution match the given Sudoku instance. To do this, we emit unary clauses of the
form

Brcv

for each r , c and v specified in the Sudoku instance description.

2. We require that the board relation is total. To do this, we emit clauses of the form

(Brc1 ∨ Brc2 ∨ . . . ∨ Brc9)

for every r and c. Note that these are the only clauses in the description of arity greater than two.

3. We require that the board relation is a function. To do this, we emit clauses of the form

(¬ Brcv1 ∨ ¬ Brcv2)

for every r , c, v1 and v2 such that v1 6= v2.

2



4. We require that no row contains the same value in two different columns. To do this, we emit clauses of
the form

(¬ Brc1v ∨ ¬ Brc2v )

for every r , c1, c2 and v such that c1 6= c2.

5. We require that no column contains the same value in two different rows. To do this, we emit clauses of
the form

(¬ Br1cv ∨ ¬ Br2cv )

for every r1, r2, c and v such that r1 6= r2.

6. We require that the same value not appear in two different positions in the same sub-board. To do this,
we emit clauses of the form

(¬ Br1c1v ∨ ¬ Br2c2v )

for every r1, r2, c1, c2 and v such that (r1, c1) 6= (r2, c2) but both coordinates are in the same sub-board.

3 Decoding The Answer

Once a satsifying assignment is found for the problem of the previous section, it remains to turn this assignment
back into a solved Sudoku board. To do so, we note that, since board is a total function, for each row r and
column c there will be exactly one value v for which Brcv is true: this v is the value which should be filled in at
position (r , c) in the board.

4 Implementation and Evaluation

All of this is implemented using two Python programs, one to encode and one to extract the answer, together
with an off-the-shelf SAT solver.

The two SAT solvers I have tried are the readily-available open-source solvers Picosat and Minisat2. These solver
both require the same input format: the famous DIMACS format. In this format, one row of text corresponds to
one clause. Each atom is given a number starting at 1. Positive literals are denoted by atom number, negative
literals by its integer negation. The DIMACS output format is similar.

The running system has been tested on several Sudoku instances, including “the hardest Sudoku” and another
“very hard” instance. End-to-end run times are uniformly in the 200 millisecond range. The program has also
been tested on a blank Sudoku board, generating a filled grid, and on an unsolvable Sudoku instance, which it
correctly repots as unsolvable.

3


