
A Proven-Correct Topological Sort
Bart Massey
2016-05-11

Given a consistent partial order of elements of a set, you can always find a total order of the
elements of that set that obeys the partial order. Such a total order is known as the topological
sort of that set. It is usually described in terms of precedences between pairs of items.

Topological Sortedness

Let there be a set of items to be sorted

[ITEM ]

and a pairwise precedence relation≺ between items with no item directly or indirectly preceding
itself.

relation ( ≺ )

≺ : ITEM ↔ ITEM

∀ x : ITEM • (x 7→ x ) 6∈ ( ≺ ) +

We want to produce a total order between the items: the easiest way to think about this is as
a sequence that is a permutation of the items.

[X ]
permutations : PX → P seq(X )

∀ s : PX • ∀ p : permutations(s) •
# p = # s ∧ ran(p) = s

We will say a sequence is topologically sorted if each item in the sequence occurs at most once
and the precedence relation is never “backward” from the sequence order. Note that for a given
set and precedence relation there may be many topologically sorted sequences.

TSORT : P seq(ITEM )

∀ t : TSORT •
t ∈ permutations(ran(t)) ∧
¬ ∃ i1, i2 : dom(t) | i1 < i2 •

t(i2) ≺ t(i1)

1



We are looking for a sequence that is topologically sorted and covers the entire set of items.

tsorts : PTSORT

∀ t : tsorts •
ran(t) = ITEM

The Source-To-Sink Method

This is a nice definition, but it leads to the question of how one might find such a sequence.
The algorithm we will give here is known as source-to-sink, and is one of the oldest topological
sort algorithms. Our implementation will not be at all efficient, but will be provably correct.

Algorithm

The state of the algorithm will be in two parts: a prefix of the final topological sort, and a set
of items remaining to be sorted. All items must occur exactly once in exactly one of these sets.

STS
sorted : TSORT
remaining : P ITEM

ran(sorted) ∪ remaining = ITEM
ran(sorted) ∩ remaining = ∅

The algorithm starts with an empty sequence and the full range of candidate items available.

InitSTS
STS

sorted = 〈〉
remaining = ITEM

At each step, the algorithm appends to the sequence some item x such that all of x ’s prede-
cessors are already in the sequence but x is not.

2



StepSTS
∆STS
x : ITEM

x ∈ remaining

¬ ∃ y : remaining ′ •
y ≺ x

remaining ′ = remaining \ {x}

sorted ′ = sorted a 〈x 〉

When it has constructed a total permutation, the algorithm stops and outputs it.

EndSTS
STS
result ! : TSORT

remaining = ∅

result ! = sorted

result ! ∈ tsorts

The complete STS algorithm just initializes its state, then iterates until it has exhausted the
items.

AlgSTS == InitSTS ′ # StepSTS # EndSTS

Correctness

We should show that our topological sort algorithm is partially correct: that the result is in
fact a complete topological sort of the items. We should also show that the algorithm always
terminates. These properties together will prove the total correctness of the STS algorithm.

Partial Correctness

To show partial correctness, we concentrate on the state invariant that is enforced by the state
schema: sorted is a topological sort and its range plus remaining forms a partition of the items.
Note that this invariant is trivially satisfied in the initial state. If the invariant is satisfied in
the final state, the result must be a topological sort. It remains to verify that each step of the
algorithm preserves the invariant.

3



We want to show that

∀ StepSTS • θ STS ∈ STS ⇒ θ STS ′ ∈ STS

This is going to be a bit tedious to do formally, since there’s a lot of expansion going on. After
performing it, we arrive at something like

# sorted = # ran(sorted) ∧ ¬ ∃ i1, i2 : dom(sorted) | i1 < i2 •
sorted(i2) ≺ sorted(i1) ∧

ran(sorted) ∪ remaining = ITEM ∧
ran(sorted) ∩ remaining = ∅ ∧ remaining ′ = remaining \ {x} ∧ sorted ′ = sorted a 〈x 〉 ⇒
# sorted ′ = # ran(sorted ′) ∧ ¬ ∃ i1, i2 : dom(sorted ′) | i1 < i2 •

sorted ′(i2) ≺ sorted ′(i1) ∧ ran(sorted ′) ∪ remaining ′ = ITEM ∧
ran(sorted ′) ∩ remaining ′ = ∅

Taking the right-hand-sides of the implication one at a time, one can quickly crank through
the proofs:

• The sorted ′ relation is still a permutation:

# sorted ′ = # ran(sorted ′)

Since we know x was not in ran(sorted), it must be the case that

# ran(sorted ′) = # sorted ′ = ran(sorted) + 1

• The sorted ′ relation still obeys the total order:

¬ ∃ i1, i2 : dom(sorted ′) | i1 < i2 • sorted ′(i2) ≺ sorted ′(i1)

Since we know this property held for sorted , the only element that could violate it now
is x (i2 = # sorted ′). But by construction, we know that x can precede no element in
ran(sorted).

• No items have been lost:

ran(sorted ′) ∪ remaining ′ = ITEM
ran(sorted ′) ∩ remaining ′ = ∅

We know this property held before, and we moved x from remaining to sorted ′. It is
straightforward to see that it still holds.

4



from sys import stdin

item = set()

predec = set()

for l in stdin:

xs = l.split()

assert len(xs) == 2

[x1, x2] = xs

item.add(x1)

item.add(x2)

predec.add((x1, x2))

# InitSTS

sorted = []

remaining = set(item)

# StepSTS

while remaining:

def find_next():

def check(x):

for y in remaining:

if (y, x) in predec:

return False

return True

for x in remaining:

if check(x):

return x

assert False

x = find_next()

for y in remaining:

assert (y, x) not in predec

remaining.remove(x)

sorted.append(x)

# EndSTS

for x in sorted:

print(x)

Figure 1: STS tsort in Python

Total Correctness

To see that the algorithm is totally correct, we must show that it completes on any valid input.
The two ways that it could not complete are to fail early or to infinite loop.

The only way the algorithm can fail early is if at some StepSTS we have that remaining 6= ∅
but

¬ ∃ x : remaining • ¬ ∃ y : remaining ′ • y ≺ x

However, given that the elements of remaining obey a partial order, there is always a minimal
element. (Proof left as an exercise.)

The only way the algorithm can nonterminate is if remaining never becomes empty. However,
each StepSTS removes an element from remaining . Thus, remaining must eventually become
empty.

Implementation

Once we have a verified correct algorithm, it remains to construct a program implementing
it. The Python program of Figure 1 implements the UNIX tsort command using the STS
algorithm specified here.

For the most part, no proof of correctness is required here: the code is correct by construction.
The exception is the code involved with choosing an x . This code needs a proof that it always

5



selects a valid value. (Proof left as an exercise.) It helps that Python provides reasonable data
types for this implementation, including native set, tuple and sequence types.

Inspection and Testing

It is rarely enough just to have proved code correct. Before executing it for the first time, the
code of Figure 1 was carefully read, and a simple randomized test generator was constructed.
The test generator imposes all the local precedences on natural numbers in the range 1 . . k for
some k , in random order.

The code passed multiple runs of this test. We regard inspection and testing as an important
process, since proofs can have bugs.

Performance

Unfortunately, on an input precedence relation with just 1000 tuples, the tsort implementation
of the previous sections takes about 10 seconds on a modern box. (Yes, Python is slow: using
PyPy to JIT the code results in about a 3 second runtime.)

To see why the performance might be poor, it is worth doing some complexity analysis. Let us
say that n = # ITEM and m = #( ≺ ). Note that in our application, n ≤ m, since the set
of items is being derived from the tuples of the precedence relation.

The outer while loop will run n times. Each time through the loop, find next() will run
O(n) times in the worst case, calling check() each time. check() takes O(m) steps to check
the precedence relation in the worst case. The overall worst-case complexity of the algorithm
is thus O(mn2). This is pretty bad.

Kahn’s Method: A Faster Topo Sort

A better topological sort algorithm would give us right answers faster. Let’s try a different
approach. As before, we will extend a topological sort until it contains all the items. The
algorithm given here is known as Kahn’s Algorithm and dates back to 1962.

Algorithm

We will group the items as a function (dictionary, array) mapping to the set of successors. This
is known as an adjacency list representation of the partial order graph.

suc : ITEM → P ITEM

∀ x : ITEM •
suc(x ) = {y : ITEM | x ≺ y}

6



We can compute, up front, the number of items preceding each item in the relation. Let us
store this as a function (dictionary, array). We will place available items on the end of the
sorted list, and keep a todo index of which items still need their successors processed.

Kahn
sorted : TSORT
todo : N1

count : ITEM → N

ran(ran(sorted) C count) = {0}

To start, we properly initialize all the counts, set the sorted sequence to contain (in any order)
the set of items with zero count, and mark the whole sequence as todo.

InitKahn
Kahn

∀ x : ITEM •
count(x ) = #(( ≺ ) B {x})

sorted ∈ permutations({x : ITEM | count(x ) = 0})
todo = 1

Now we take a series of steps. In each step, we examine the next todo item in the sequence
and decrement the counts of its successors, in the process adding now-ready successors to the
sorted list for processing. Finally, we increment todo.

StepKahn
∆Kahn

todo ≤ # sorted
count ′ = count ⊕ {y : suc(sorted(todo)) • y 7→ count(y)− 1}
∃ p : permutations(dom(count ′ B {0}) ∩ dom(count B {1})) •

sorted ′ = sorted a p
todo ′ = todo + 1

When we run out of things to do, we will have all the counted items in sorted order.

7



EndKahn
Kahn
result ! : tsorts

todo > # sorted
ran(count) = {0}
result ! = sorted

The overall flow is the same as with AlgSTS :

AlgKahn == InitKahn ′ # StepKahn # EndKahn

Correctness

This correctness proof sketch mirrors the one for the previous algorithm. It is arguably easier
than the previous one, because the invariant is simpler to maintain.

Partial Correctness

To see that this algorithm is partially correct, we follow essentially the same procedure as
before. Calculating all the constraints for StepKahn, we find that we need to ensure that

sorted ∈ TSORT ∧
ran(ran(sorted) C count) = {0} ∧
todo ≤ # sorted ∧
count ′ = count ⊕ {y : suc(sorted(todo)) • y 7→ count(y)− 1} ∧
(∃ p : permutations(dom(count ′ B {0}) ∩ dom(count B {1})) •

sorted ′ = sorted a p) ∧
todo ′ = todo + 1 ⇒
ran(ran(sorted ′) C count ′) = {0} ∧
sorted ′ ∈ TSORT

• To establish that the count of each sorted ′ item is zero:

ran(ran(sorted ′) C count ′) = {0}
it is sufficient to note that the old items of sorted ′ already had the property, and the newly-
added items must, since they are constructed in such a way that count ′ is necessarily 0.

• To establish that sorted ′ is still a topological sort of its elements:

sorted ′ ∈ TSORT

we first note that it cannot be the case that the newly-added items should have come
before any item in sorted : all items x in sorted have count(x ) = 0, so they cannot have
any unresolved predecessors. Similarly, we note that all the newly-added items x have
count ′(x ) = 0, so they cannot have any not-yet-added predecessors.

8



from sys import stdin

item = set()

suc = dict()

for l in stdin:

xs = l.split()

assert len(xs) == 2

[x1, x2] = xs

item.add(x1)

item.add(x2)

if x1 not in suc:

suc[x1] = set()

if x2 not in suc:

suc[x2] = set()

suc[x1].add(x2)

# InitKahn

count = dict()

for x in item:

count[x] = 0

for x in item:

for y in suc[x]:

count[y] += 1

sorted = []

for x in item:

if count[x] == 0:

sorted.append(x)

todo = 0

# StepKahn

while todo < len(sorted):

x = sorted[todo]

assert count[x] == 0

for y in suc[x]:

count[y] -= 1

if count[y] == 0:

sorted.append(y)

todo += 1

# EndKahn

assert len(sorted) == len(item)

for x in sorted:

print(x)

Figure 2: Kahn tsort in Python

Total Correctness

To see that the algorithm terminates, it is sufficient to note that # sorted never exceeds
# ITEM , but at each step todo increases by one. StepKahn must eventually terminate, since
todo must increase to exceed # sorted .

Implementation

The Python program of Figure 2 implements the UNIX tsort command using the Kahn
algorithm specified here.

It is notable that a trivial but not syntactical bug was found in the initial implementation.
When setting up the adjacency list, rather than following the literal description in the specifi-
cation, an inline algorithm was used to initialize the list: this algorithm forgot to create empty
successor sets for sink nodes (with no successors). The proven code worked fine on the first try.

Performance

To see why the performance might be better, it is again worth doing some complexity analysis.
We will assume for convenience that set insertion, set membership, dictionary lookups and the

9



like can be done in time O(1).

The input loop takes time O(m), since it processes each edge. InitKahn takes time O(m),
since it is dominated by the inner loop that increments count. EndKahn takes time O(n) just
to print out.

This leaves StepKahn. Here, it appears that the dominant work is also the O(m) total cost
of executing this operation to completion: each edge in predec is processed exactly once. y.
(However, interestingly, there’s also the cost of computing len(sorted) at each iteration. We
assume for now that Python caches this length, but this should be checked.) This makes the
overall worst-case cost O(m). This is a vast improvement over the O(mn2) cost of the earlier
algorithm.

In practice, the runtime of this implementation on one million precedence edges is roughly
the same as that of the original implementation on one thousand edges. This is a dramatic
speedup, especially since it does not apparently compromise correctness.

Conclusion and Future Work

There is still a lot more to do here. In particular, the extremely sketchy proof sketch of
section 3.2.1 should be formalized and validated, arguably by machine.

That said, this work argues that it is in fact feasible to produce correct code for algorithms for
real problems. Further, a library of such algorithms would be a real help in the construction
of larger correct systems.

10


