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ADTs

An Abstract Data Type is a poorly-defined and old concept in SE. A standard way to formalize
it in the modern world is with an algebraic description.

An algebra consists of sets (sorts, types) of objects (carrier sets), a set of operations (functions)
closed over those objects (all operations take arguments of carrier set type and return a result
of carrier set type), and a collection of laws (equations) that constrain how the operations work.

For example:

Counter = {Z; incr , decr}

new : Counter
val : Counter → Z
incr : Counter → Counter
decr : Counter → Counter

val(new) = 0
∀ x : Counter • incr(decr(x ) = decr(incr(x )) = x
∀ x : Counter • val(incr(x )) > val(x )
∀ x : Counter • val(decr(x )) < val(x )

Z ADTs

An ADT specification looks an awful lot like a Z specification. The most problematic is the
actual definition of Counter , which looks like it should just be a schema.
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Counter
new : Counter
val : Counter → Z
incr : Counter → Counter
decr : Counter → Counter

val(new) = 0
∀ x : Counter • incr(decr(x )) = decr(incr(x )) = x
∀ x : Counter • val(incr(x )) > val(x )
∀ x : Counter • val(decr(x )) < val(x )

Unfortunately, this won’t typecheck, since we cannot use Counter until it is defined. Probably
better, if a little odd, is to make Counter just be a type and use a generic schema to capture
its operations and laws.

CounterADT [Counter ]
new : Counter
val : Counter → Z
incr : Counter → Counter
decr : Counter → Counter

val(new) = 0
∀ x : Counter • incr(decr(x )) = decr(incr(x )) = x
∀ x : Counter • val(incr(x )) > val(x )
∀ x : Counter • val(decr(x )) < val(x )

Note the key ADT property: we cannot tell anything about the structure of Counter except
what is implied by the laws.

ADT Implementation

Let us start with the obvious implementation of CounterADT .

CounterZ
CounterADT [Z]

new = 0
∀ x : Z • val(x ) = x
∀ x : Z • incr(x ) = x + 1
∀ x : Z • decr(x ) = x − 1

The key question is whether this implementation obeys the laws of counters:
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val(new) = val(0) = 0
∀ x : Counter •

incr(decr(x )) = (x − 1) + 1 = x
decr(incr(x )) = (x + 1)− 1 = x

∀ x : Counter • val(incr(x )) = val(x + 1) = x + 1 >
val(x ) = x

∀ x : Counter • val(decr(x )) = val(x − 1) = x − 1 <
val(x ) = x

So. . .yes.

Partial Operations Are Awkward

One nice property that Counter has as specified is that every operation is a total function. It
is not uncommon, though, that we would prefer a “natural” counter such that

∀ x : NatCounter • val(x ) ≥ 0

We could try just doing the obvious thing and adding this law to the counter laws.

NatCounterADTUnsound [NatCounter ]
new : NatCounter
val : NatCounter → Z
incr : NatCounter → NatCounter
decr : NatCounter → NatCounter

∀ x : NatCounter • val(x ) ≥ 0

val(new) = 0
∀ x : NatCounter • incr(decr(x )) = decr(incr(x )) = x
∀ x : NatCounter • val(incr(x )) > val(x )
∀ x : NatCounter • val(decr(x )) < val(x )

Unfortunately, we get into trouble immediately: decr can no longer be a total function.

val(new) = 0 [1: given]
∀ x : NatCounter • val(decr(x )) < val(x ) [2: given]
∀ x : NatCounter • val(x ) ≥ 0 [3: given]
val(decr(new)) < 0 [4: (1), ∀-inst (2)]
val(decr(new)) ≥ 0 [5: ∀-inst (2)]
¬ (val(decr(new)) < 0) [6: math (5)]
� [�-intro (4), (6)]
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In a way, the fact that we can prove our specification unsound is good news. This keeps us
from building a program that will have runtime errors. However, we have to figure out what
to do about it. There are three standard approaches.

Restrict Operation Domains

The easiest thing to do is simply to restrict the domain of decr .

NatCounterADTRestrict [Counter ]
CounterADT [Counter ]

ran(val) = N
dom(decr) = Counter \ {new}

This isn’t quite right: we must also relax the laws of CounterADT a bit so that incr(decr(new))
is undefined.

Note that we now have a proof obligation every time we use decr : we must prove that it is
not being passed new . This is probably good practice and the right way to go, but it can
significantly complicate proofs.

Force Operations To Be Total

We could certainly insist that the decr function always return a result with non-negative val .
The obvious way to do this is to modify the laws so that decrementing from zero just returns
zero again.

NatCounterADTTotal [NatCounter ]
new : NatCounter
val : NatCounter → Z
incr : NatCounter → NatCounter
decr : NatCounter → NatCounter

∀ x : NatCounter • val(x ) ≥ 0

val(new) = 0
decr(new) = new
∀ x : NatCounter • decr(incr(x )) = x
∀ x : NatCounter | x 6= new • incr(decr(x )) = x
∀ x : NatCounter • val(incr(x )) > val(x )
∀ x : NatCounter | x 6= new • val(decr(x )) < val(x )
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Unfortunately, this revised counter “acts weird”. Some of the laws of the unsound counter
were things we wanted to hold, and now they don’t. The behavior that calling decr may not
actually decrease the counter, in particular, is surprising and will probably lead to bugs in the
code that uses counters.

Lift To An Error Value

Let us define a generic type for values that either indicate an error or a non-error value.

[GenericCounter ]
RESULT ::= nope | ok〈〈GenericCounter〉〉
RESULTN ::= nopen | okn〈〈N〉〉

We can now rewrite the laws to have an explicit nope when decrementing too far.

NatCounterADTLifted
new : RESULT
val : RESULT → RESULTN
incr : RESULT → RESULT
decr : RESULT → RESULT

val(new) = okn(0)

decr(new) = nope

∀ x : RESULT • x = decr(incr(x ))

∀ x : RESULT | x 6= new • incr(decr(x )) = x

val(nope) = nopen

∀ x : RESULT ; y , z : N |
x 6= nope ∧ okn(y) = val(incr(x )) ∧ okn(z ) = val(x ) •
y > z

val(nope) = nopen

∀ x : RESULT ; y , z : N |
x 6∈ {nope, new} ∧ okn(y) = val(decr(x )) ∧ okn(z ) = val(x ) •
y < z

val(decr(new)) = nopen

Notice that this is a huge mess, making proofs tough. It also punts all errors to runtime. Not
a great choice either.
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