
SOFTWARE 

ARCHITECTURE 
Kevin P Dyer 



The goal of this lecture 

• To get you to think about your architecture 

before you start coding 



What do we mean by architecture? 

• Structure or structures of a system 
• Internal or external 

• The relationship between the structures of 

the system 



How do we measure a design? 

• Is the customer happy? 

• Understand requirements and communicate 

with the customer early and often 

• But there is more… 



How do we measure a design? (cont.) 

• Usability 
• Important for a low-level API or a GUI (is your interface 

intuitive?) 

• Integrity 
• Data or resources should not be modified without 

authorization (does your program require root?) 

• Availability 
• All required components of the system should function 

correctly and respond quickly (is it fast?) 

• Confidentiality 
• Data or resources should not be exposed to 

unauthorized persons (how do you interface with your 
primitive data structures?) 



Case Study #1: An iPhone app 

• You are responsible for the development of 

an iPhone app for a major bank 

• Requirements: 

• User must be able to view account balance 

• Bank must be able to send messages to users 

• There should be no ‘write’ functionality 

• For example, the user should not be able to 

transfer money from their account to an external 

account 



Case Study #1: An iPhone app 

• Where do you start? 

• What does the infrastructure look like? 

• What could go wrong? 

• Consider distribution of work between 

server and client 



Case Study #2: GPS 

• You are responsible for the development of 

a GPS application 

• What types of questions should we ask 

about the requirements? 



Case Study #2: GPS 

vs. 



Case Study #2: GPS 

• Where do you start? 

• What does the infrastructure look like? 

• What could go wrong? 

• Consider distribution of work between 

server and client 



Case Study #3: A High Traffic Website 

• You are responsible for the development of 

a major website 

• Requirements: 
• 10M/users a month 

• Users will register and store personal data 



Case Study #3: A High Traffic Website 

• Where do you start? 

• What does the infrastructure look like? 

• What could go wrong? 



What is important in high level design? 

• Understand how the customer will use the 

software 
• This is hard because the customer may not know 

• However, don’t plan too much 
• We can always redeploy software 

 

• Find a balance between the two 



In practice: What works? 

• Continuous Integration 

• Unit Tests 

• Prototyping 

• Regular communication (internal + 

external) 

• Code reviews 



In practice: What doesn’t work? 

• A lack of requirements 

• Inconsistent coding practices amongst 

team members 

• High level requirements mean nothing if 

they are ignored on a daily basis (don’t 

ignore your initial planning!) 


