
DETAILED SOFTWARE
DESIGN1

Kevin P Dyer

1 These slides are based on material from Wikipedia.

Detailed Software Design
• New Code vs. Legacy Code
•  Internal vs. External

The Basics: Coding Standards
• Seriously, style matters
• Check your style with your editor
• Alternatively, use one of these tools (for C++):

•  Uncrustify
•  Astyle (Artistic Style)
•  Polystyle
•  SQCBW
•  GC! GreatCode
•  Pork
•  Vera++
•  Bcpp (C++ Beautifier)
•  KWStyle

Consistency is everything
• Make a decision about style and convention

• Examples:
•  _memberVariables vs localVariables
•  CONSTANTS vs variables
•  pPointers vs variables

Consistency is everything
<?php
$dirtyZipCode = $_GET[‘zipcode’];

$cleanZipCode = sanitizeInput($dirtyZipCode);

// a few hundred lines later…

<p><?=$dirtyZipCode?></p> // very very bad!

New Functionality
• How do you translate requirements or a high level design

into real code?

The User Story
• A user story is one or more sentences in the everyday or

business language of the user that captures what the user
wants to achieve. … Each user story is limited, so it fits on
a small paper note card—usually a 3×5 inches card—to
ensure that it does not grow too large. The user stories
should be written by the customers for a software project
and are their main instrument to influence the
development of the software.

The User Story
• User stories are a quick way of handling customer

requirements without having to elaborate vast formalized
requirement documents and without performing
overloaded administrative tasks related to maintaining
them. The intention of the user story is to be able to
respond faster and with less overhead to rapidly changing
real-world requirements.

The User Story
• Example template:

•  “As a <role>, I want <goal/desire> so that
<benefit>”

• Example stories:
•  As a customer representative, I want to search
for my customers by their first and last name.

•  Upon closing the application, the user is
prompted to save (when ANYTHING has changed in
the data since the last save!).

So…
• …you have a user story. Now what?

Create Prototypes
• Don’t be afraid to throw away your code and rewrite it

Model-View-Controller
•  The view renders the model into a form suitable for interaction,

typically a user interface element. Multiple views can exist for a
single model for different purposes. A viewport typically has a
one to one correspondence with a display surface and knows
how to render to it.

•  The controller receives input and initiates a response by
making calls on model objects. A controller accepts input from
the user and instructs the model and viewport to perform
actions based on that input.

•  The model is used to manage information and notify observers
when that information changes. The model is the domain-
specific representation of the data upon which the application
operates. … When a model changes its state, it notifies its
associated views so they can be refreshed.

Model-View-Controller
• Real World Uses

•  Web Applications
•  Mobile Applications
•  Desktop Applications
•  Almost anything with a GUI…

• When is MVC not right?
•  Video Games
•  Video Players
•  Applications that require high performance

Command Pattern
•  In object-oriented programming, the command pattern is

a design pattern in which an object is used to represent
and encapsulate all the information needed to call a
method at a later time. This information includes the
method name, the object that owns the method and
values for the method parameters.

Command Pattern
• Uses

•  Multi-level undo
•  Transactions
•  Progress bars
•  Wizards
•  GUI buttons/actions
•  Mobile applications

• You can even serialize and transmit Commands across
the network

Singleton Pattern
•  In software engineering, the singleton pattern is a design

pattern used to implement the mathematical concept of a
singleton, by restricting the instantiation of a class to one
object. This is useful when exactly one object is needed to
coordinate actions across the system. The concept is
sometimes generalized to systems that operate more
efficiently when only one object exists, or that restrict the
instantiation to a certain number of objects (say, five).

Singleton Pattern
// Header file (.h)
class Singleton
{
 private:
 Singleton() {}
 ~Singleton() {}
 Singleton(const Singleton &);
 Singleton & operator=(const Singleton &);

 public:
 static Singleton &getInstance();
};

// Source file (.cpp)
Singleton& Singleton::getInstance()
{
 static Singleton instance;
 return instance;
}

Singleton Pattern
• Pros

•  Restricts the number of instances of a specific resource
•  May save memory/resources if used in the right conditions

• Cons
•  Makes unit testing much harder, since you now have to consider

the system state
•  A lock mechanism must be implemented in multi-threaded

programs

What about legacy code?

What about legacy code?
•  Interfaces are hard to get right
• Poor decisions linger for decades
• As a software engineer this will waste a lot of your time

Legacy Code: The minutiae
// oci8 PHP driver 1.4.1!
// oci8_statement.c:1452!
…!
bindp->bind = NULL;!
bindp->zval = var;!
bindp->array.type = type;!
bindp->type = 0; // added in version 1.4.2!
…!

Façade Pattern
• Make a software library easier to use, understand and

test, since the facade has convenient methods for
common tasks;

• Make code that uses the library more readable, for the
same reason;

• Reduce dependencies of outside code on the inner
workings of a library, since most code uses the facade,
thus allowing more flexibility in developing the system;

• Wrap a poorly-designed collection of APIs with a single
well-designed API (as per task needs).

Façade Pattern

Decorator Pattern
•  The decorator pattern is a design pattern that allows new/

additional behaviour to be added to an existing object
dynamically.

•  This pattern is designed so that multiple decorators can
be stacked on top of each other, each time adding a new
functionality to the overridden method(s).

•  The decorator pattern is an alternative to subclassing.
Subclassing adds behavior at compile time, and the
change affects all instances of the original class;
decorating can provide new behavior at runtime for
individual objects.

Decorator Pattern

A RESTful Web Service
• Representational State Transfer by Roy Fielding (2000)

• Non-RESTful (direct access to a resource/script)
•  read: /v1/GetContent.ashx?id=[id]&format=[xml|json]
•  delete: /v1/DeleteContent.ashx?id=[id]&format=[xml|json]

• RESTful (a façade, which redirects the request to a
resource)
•  read: /catalog/[id]
•  read: /catalog/[format]/[id]
•  delete: /catalog/delete/[id]
•  delete: /catalog/[format]/delete/[id]

Someone will actually use your code
• Consider how your interfaces, and logic deep in your

code, will alter the appearance and behaviour of your
program

In Practice: What works?
• Prototyping
• Using verbs/nouns for classes, variables, and external

interfaces (keep a thesaurus at your desk!)
• Pair programming
• Code reviews
• Making tons of mistakes, but learning from them

In Practice: What doesn’t work?
• Don’t work on a project unless it excites you. Otherwise, it

is too exhausting to care about the details.
• Don’t start coding without well defined short-term goals

(remember user stories!)
• Don’t ignore high level designs or coding standards simply

because they are tedious or boring

•  “adding manpower to a late software project makes it later”

