
Pseudocode, programming 
languages and tools

PSU CS 300 Lecture 5-1

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>



Pseudocode

● Input: Last stage of 
detailed design

● Output: Program described 
as English text

● Rationale: Programming is 
hard; language is irrelevant



Principles of pseudocode

● Roughly one pseudocode 
statement for every 1-10 
lines of code

● Easily translatable to code
● Use abstract data types, 

esp sets, graphs
● Pick your degree of 

formalism



Example: Zipf's Law

● Zipf's Law: Graph of
‹R(w

i
)-1, C(w

i
)›

roughly linear increasing
● Task: Emit, in ascending x 

order, ‹x, y› pairs for all 
words in input text

● Ties?



Design

● Read input text, 
generating frequency table

● Sort frequency table by 
decreasing rank

● Emit ‹x, y› pairs from table
● (External plotting program 

gnuplot)



Pseudocode (1)

● Create new empty hash 
map freq from word to 
count

● Read characters from input
● Group characters into 

words



Pseudocode (2)

● For each word w in input
– Normalize w
– If w in freq, increment count
– Otherwise, set count to 1

● Convert freq to list of
‹w

i
, C(w

i
)› pairs



Pseudocode (3)

● Sort freq' by decreasing C(w
i
)

● For each ‹w
i
, C(w

i
)› in freq'

– Print line w
i
, 1.0 / i, C(w

i
)



Implementation

● Pick a language
● Write code
● No problem!
● Problems

– Coding issues
– Bugs



Pick a language,
any language

● Four basic idioms
– Imperative (von Neumann)
– Functional
– Logic
– Object Oriented



The C problem

● Horrible application lang
– Inexpressive
– Error-prone

● with bad failure modes
– Not modular
– Not portable

● So bad, it encourages C++



You want these features

● “Higher-level” constructs
● Decent module system
● Automatic storage mgmt
● Maximal static checking
● Domain support
● Decent dev environment


	Title
	pcode
	pcode princ
	zipf
	design
	pc 1
	pc 2
	pc 3
	impl
	lang
	!C
	features

