
Getting Code Right

PSU CS 300 Lecture 5-2

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>



Principles of Coding

● Style
● Formatting
● Correctness



Single-Entry Control 
Structures

● “Turing-complete”: can write 
anything

● Dynamic structure follows 
static structure = easy to read

● vs Single-Exit



GOTO Considered

– GOTO considered harmful (Dijkstra) except
● natural labeling (i.e., state machine)
● loop exit ala C break statement

● well-labeled unusual situation
● ill-endowed language (e.g., assembly)



Formatting

● You already know how to do 
this
– follow a consistent style
– use plenty of white space
– one statement per line

● Follow standards
– cultural conventions, org rules
– style of preceding programmers



Naming

● Names can be
– too short or long
– insufficiently idiomatic
– too clever
– misspelled or ambiguous

● Name to avoid commenting



Commenting

● Comments give commentary
● Comments are mandatory

– at cleverness
– top of any non-trivial module
– any complex control flow
– to cite references

● Comments vs documenting



Assertions

● Assertions are
– comments
– debugging aids
– compiler hints

● Retain forever if possible



Cleverness

● Never ever be clever!
– always choose the simplest way
– comment where there is the 

slightest doubt
● Code should be best translation

of detailed design
● See http://www.ioccc.org/ for

amazing counterexamples



Optimization

● Optimize design, not code!
– Massey/Packard 2x Rule

● You cannot predict what code 
will be slow
– modern compilers are too clever
– modern hardware is too complex
– you do not understand your 

design well enough



Tuning

● If you must tune code
– comment it thoroughly!
– retain and maintain 

unoptimized version
● Profiling is your friend
● Do tuning last



Portability

● Avoid the undefined:
at least be cross-version

● Always choose clean over 
portable (initially)

● Modules, not conditions
● No gratuitous portability



Instrumentation

● Make state accessible
● Keep statistics
● Use reporting mechanisms 

that are
– unobtrusive
– usable



Code Management

● Crucial modern advance
● Many types of tool

– revision control
– build management
– code browsing and visualization
– defect reporting and tracking



Code Browsers
● Improved view of code
● Features include

– “cross-referencing” 
variable/function use/def

– “pretty-printing” or formatting
– abstraction of code views

● Most common in OOP (why?)
● Modern way is IDE



Defect Tracking

● Usually maintenance-phase
● Record defect information
● Allocate resources to repair
● Largely custom or integrated
● Things with names like 

“BugTraq”, Bugzilla



Readable,
Maintainable Code

● Good software development 
techniques produce code that is
– simple
– readable

● Combined with good 
maintenance techniques, this 
leads to long and successful 
product lifetimes


	Title
	Principles of Coding
	Single-Entry Control Structures
	GOTO Considered
	Formatting
	Naming
	Commenting
	Assertions
	Cleverness
	Optimization
	Tuning
	Portability
	Instrumentation
	Code Management
	Code Browsers
	Defect Tracking
	Readable, Maintainable Code

