Debugging and
Diagnhostic Reasoning

PSU CS 300 Lecture 6-1

Bart Massey
Assoc Prof Computer Science
Portland State University
<bart@cs.pdx.edu>



Debugging paradoxes

« Everyone knows how

 It's hard to find bugs

 It's easy to fix bugs

* It's hard to fix bugs right
 Debugging is unnecessary



Coding? Sure. Debugging?

| know of no good
debugging textbook

* | know of no good online
tutorial on debugging

e There is
of debugging
iIn CS / SE



Think like a doctor

« Observe symptoms

 Generate diagnostic
hypotheses, then
observe further

e Select a treatment

« Consider consequences



Think like Dr. Frankenstein

 Kill patient as needed
« Start over anytime

« Redesign or respecify
patient as needed

e But don't work alone



Shorten the cycle

 Frankenstein =2 possibility
of quick edit / fail /debug

° ensues

 Don't proceed until you
know what you're doing

« Check your work



Collecting symptoms

« Have test cases (check 'em)
 Record not just function
 Form hypotheses in parallel
 Don't prematurely commit



Constructing hypotheses

e Write them down!

« Make sure that each is
consistent with observation

 Only testable hypotheses

« Occam's Razor is sharp



Choosing a hypothesis

 Write things down!

 Run your distinguishing
experiments

« May eliminate all

« What if there are
P,



Confirming the hypothesis

e Run

 Write things down! (for
future reference)

 Don't underdo this step!
« Look for root causes



Root cause analysis

 You aren't done until you
can
, in a way that anyone
could understand

« Where is the root defect?

« How and when did the root
defect get in?

« What needs to be done?



Experimental design

 Write designs down!

« What observations are
needed? How can you
make them?

 Instrumentation may be
needed. Design it.



Debugging prototypes

« Often easier to build simple
debugging prototype

- understand system / language
- understand algorithm
- test experimental design

« Wrap stub prototype around
real code as a



Making a repair

 Root cause analysis guides
repair strategy

 First do no harm
 The Kelly-Bootle Law
 Check the repair



Pair debugging

 Better than pair
programming

- Common mistakes are human-
caused

- More knowledge is brought to
bear

- Sanity checks



Common pitfalls

 Not understanding the
defect (e.g. bad test case)

(e.g. code patches)

 Not understanding the
repair (e.g. edit wrong file)

 Not checking the repair



Minimizing debugging

 If your design is right, and
if you , you wWill
spend less time debugging

 If your V&YV is good, you
will do debugging in a less
tight loop (is this a good
thing?)



Get expert help

 Debugging is not for
novices: seek expert
debugging help

« Can a lot about
debugging this way

 Experts will help you feel
better about it all, too



Debugging and
Diagnostic Reasoning

PSU CS 300 Lecture 6-1

Bart Massey
Assoc Prof Computer Science
Portland State University
<bart@cs.pdx.edu>




Debugging paradoxes

« Everyone knows how
 It's hard to find bugs
* It's easy to fix bugs

* It's hard to fix bugs right
« Debugging is unnecessary




Coding? Sure. Debugging?

* | know of no good
debugging textbook

* | know of no good online
tutorial on debugging

* There is
of debugging
in CS /SE




Think like a doctor

 Observe symptoms

 Generate diagnostic
hypotheses, then
observe further

« Select a treatment

 Consider consequences




Think like Dr. Frankenstein

 Kill patient as needed
« Start over anytime

 Redesign or respecify
patient as needed

« But don't work alone




Shorten the cycle

* Frankenstein -2 possibility
of quick edit / fail /debug

. ensues
 Don't proceed until you

know what you're doing
 Check your work




Collecting symptoms

- Have test cases (check 'em)
* Record not just function

* Form hypotheses in parallel
 Don't prematurely commit




Constructing hypotheses

e Write them down!

- Make sure that each is
consistent with observation

* Only testable hypotheses

« Occam's Razor is sharp




Choosing a hypothesis

» Write things down!

* Run your distinguishing
experiments

« May eliminate all

- What if there are
2




Confirming the hypothesis

e Run

» Write things down! (for
future reference)

 Don't underdo this step!
 Look for root causes




Root cause analysis

* You aren't done until you
can
, in a way that anyone
could understand

« Where is the root defect?

« How and when did the root
defect get in?

 What needs to be done?




Experimental design

» Write designs down!

- What observations are
needed? How can you
make them?

* Instrumentation may be
needed. Design it.




Debugging prototypes

» Often easier to build simple
debugging prototype

- understand system / language
- understand algorithm

- test experimental design

« Wrap stub prototype around
real code as a




Making a repair

 Root cause analysis guides
repair strategy

e First do no harm

* The Kelly-Bootle Law
» Check the repair




Pair debugging

» Better than pair
programming

- Common mistakes are human-
caused

- More knowledge is brought to
bear

- Sanity checks




Common pitfalls

* Not understanding the
defect (e.g. bad test case)

(e.g. code patches)

* Not understanding the
repair (e.g. edit wrong file)

* Not checking the repair




Minimizing debugging

 If your design is right, and
if you , you will
spend less time debugging

 If your V&V is good, you

will do debugging in a less
tight loop (is this a good
thing?)




Get expert help

 Debugging is not for
novices: seek expert
debugging help

« Can a lot about

debugging this way

 Experts will help you feel
better about it all, too




