
Debugging and
Diagnostic Reasoning

PSU CS 300 Lecture 6-1

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>

Debugging paradoxes

● Everyone knows how
● It's hard to find bugs
● It's easy to fix bugs
● It's hard to fix bugs right
● Debugging is unnecessary
● There is always debugging

Coding? Sure. Debugging?

● I know of no good
debugging textbook

● I know of no good online
tutorial on debugging

● There is little formal
discipline of debugging
in CS / SE

Think like a doctor

● Observe symptoms
● Generate diagnostic

hypotheses, then
observe further

● Select a treatment
● Check that the treatment

solves the symptoms
● Consider consequences

Think like Dr. Frankenstein

● Kill patient as needed
● Start over anytime
● Take patient apart,

patch in pieces
● Redesign or respecify

patient as needed
● But don't work alone

Shorten the cycle

● Frankenstein → possibility
of quick edit / fail /debug

● Thrashing ensues
● Don't proceed until you

know what you're doing
● Check your work

Collecting symptoms

● Write things down!
● Have test cases (check 'em)
● Record not just function
● Form hypotheses in parallel
● Don't prematurely commit

Constructing hypotheses

● Write them down!
● Make sure that each is

consistent with observation
● Only testable hypotheses
● Design experiments now
● Occam's Razor is sharp

Choosing a hypothesis

● Write things down!
● Run your distinguishing

experiments
● May eliminate all
● What if there are two

problems?

Confirming the hypothesis

● Run confirming experiments
● Write things down! (for

future reference)
● Don't underdo this step!
● Look for root causes

Root cause analysis

● You aren't done until you
can explain why the bug is
there, in a way that anyone
could understand

● Where is the root defect?
● How and when did the root

defect get in?
● What needs to be done?

Experimental design

● Write designs down!
● What observations are

needed? How can you
make them?

● Instrumentation may be
needed. Design it.

● Don't just poke at things

Debugging prototypes

● Often easier to build simple
debugging prototype
– understand system / language
– understand algorithm
– test experimental design

● Wrap stub prototype around
real code as a test jig

Making a repair

● Root cause analysis guides
repair strategy

● First do no harm
● The Kelly-Bootle Law
● Check the repair
● Document the repair

Pair debugging

● Better than pair
programming
– Common mistakes are human-

caused
– Fatigue is decreased
– More knowledge is brought to

bear
– Sanity checks

Common pitfalls

● Not understanding the
defect (e.g. bad test case)

● Not understanding the error
(e.g. code patches)

● Not understanding the
repair (e.g. edit wrong file)

● Not checking the repair

Minimizing debugging

● If your design is right, and
if you pseudocode, you will
spend less time debugging

● If your V&V is good, you
will do debugging in a less
tight loop (is this a good
thing?)

Get expert help

● Debugging is not for
novices: seek expert
debugging help

● Can learn a lot about
debugging this way

● Experts will help you feel
better about it all, too

Debugging and
Diagnostic Reasoning

PSU CS 300 Lecture 6-1

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>

Debugging paradoxes

● Everyone knows how
● It's hard to find bugs
● It's easy to fix bugs
● It's hard to fix bugs right
● Debugging is unnecessary
● There is always debugging

Coding? Sure. Debugging?

● I know of no good
debugging textbook

● I know of no good online
tutorial on debugging

● There is little formal
discipline of debugging
in CS / SE

Think like a doctor

● Observe symptoms
● Generate diagnostic

hypotheses, then
observe further

● Select a treatment
● Check that the treatment

solves the symptoms
● Consider consequences

Think like Dr. Frankenstein

● Kill patient as needed
● Start over anytime
● Take patient apart,

patch in pieces
● Redesign or respecify

patient as needed
● But don't work alone

Shorten the cycle

● Frankenstein → possibility
of quick edit / fail /debug

● Thrashing ensues
● Don't proceed until you

know what you're doing
● Check your work

Collecting symptoms

● Write things down!
● Have test cases (check 'em)
● Record not just function
● Form hypotheses in parallel
● Don't prematurely commit

Constructing hypotheses

● Write them down!
● Make sure that each is

consistent with observation
● Only testable hypotheses
● Design experiments now
● Occam's Razor is sharp

Choosing a hypothesis

● Write things down!
● Run your distinguishing

experiments
● May eliminate all
● What if there are two

problems?

Confirming the hypothesis

● Run confirming experiments
● Write things down! (for

future reference)
● Don't underdo this step!
● Look for root causes

Root cause analysis

● You aren't done until you
can explain why the bug is
there, in a way that anyone
could understand

● Where is the root defect?
● How and when did the root

defect get in?
● What needs to be done?

Experimental design

● Write designs down!
● What observations are

needed? How can you
make them?

● Instrumentation may be
needed. Design it.

● Don't just poke at things

Debugging prototypes

● Often easier to build simple
debugging prototype
– understand system / language
– understand algorithm
– test experimental design

● Wrap stub prototype around
real code as a test jig

Making a repair

● Root cause analysis guides
repair strategy

● First do no harm
● The Kelly-Bootle Law
● Check the repair
● Document the repair

Pair debugging

● Better than pair
programming
– Common mistakes are human-

caused
– Fatigue is decreased
– More knowledge is brought to

bear
– Sanity checks

Common pitfalls

● Not understanding the
defect (e.g. bad test case)

● Not understanding the error
(e.g. code patches)

● Not understanding the
repair (e.g. edit wrong file)

● Not checking the repair

Minimizing debugging

● If your design is right, and
if you pseudocode, you will
spend less time debugging

● If your V&V is good, you
will do debugging in a less
tight loop (is this a good
thing?)

Get expert help

● Debugging is not for
novices: seek expert
debugging help

● Can learn a lot about
debugging this way

● Experts will help you feel
better about it all, too

