
Testing Basics & Unit Test

PSU CS 300 Lecture 8-2

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>

Unit test is a laboratory

● “Unit” = procedure, function,
method, etc

● Most real units aren't well
specified and designed

● Most new unit testing driven
by new methodologies

● Unit test informs system test

Testing basics

● Input: sequence of inputs
presented to program after
startup

● Output: sequence of
behaviors of program after
startup

● Test case: input → output

More testing basics

● Test set: set of test cases
● Domain: set of all possible

inputs; large or infinite
● Subdomain: subset of a

domain with interesting
properties

Stubs and drivers

● Stub: for testing a system or
unit that depends on code
that has not yet been written

● Driver (harness): for testing
code outside of its designed
environment (may also not
have been written)

Black-box and other-box

● Black box testing: as though
interface is opaque; can see
only interface requirements

● White / clear / broken box
testing: can look at design
and/or code in order to try to
improve testing

Black box tests

● random
● profile / user
● domain coverage
● subdomain coverage
● range coverage
● error tests

White box tests

● Boundary conditions
– control boundaries
– data boundaries
– mutation
– fault seeding

● Test coverage
– control: statement, branch, path
– data: range analysis

What's a test plan?

● In either order
– Generate test set
– Get code to test

● Write needed stubs / drivers
● Run tests
● Measure and analyze output

Regression testing

● Save test set for
maintenance changes

● Add tests during
maintenance activities

● Automate test runs
● Fight regressions:

things become “unfixed”

Unit testing

● Usually white-box
– in fact, may not have any spec

other than the code itself
● Naturally bottom-up

– integration test plan is a
natural style of test

● Sparse and targeted
– make system test easier

Test-driven development

● Write the unit test
● (XP: run the unit test and

make sure it fails)
● Then write the code
● Then verify that it passes
● Not my favorite style

Code coverage

● Good code coverage is a
common testing goal

● Coverage tools help measure
● Easier to cover code with unit

tests than with system tests
● But tests may not reflect

“normal” input domain

Unit stubs and drivers

● White box: requires
accessing module internals

● Many tools and libraries for
auto-generating drivers

● Stubs are a problem;
bottom-up helps

● OO folks are leaders here

What unit tests give

● Do pseudocode + inspection,
supercede unit tests? No
– Implementation mistakes can

be quite subtle
– Unit testing can be slightly

cheaper than inspection
● But like all V&V, need to limit

use to needed portion

	Title
	lab
	basics 1
	basics 2
	stubs / drivers
	black / white
	black
	white
	test plan
	regression
	unit
	test-driven
	coverage
	impl unit
	benefits

