
System V&V

PSU CS 300 Lecture 8-1

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>

Check it

● System V&V builds on
– requirements, design
– unit test
– inspection

● AKA “QA”, “Testing”
● Alternative: “User Testing”

Verification

● System operates according
to requirements

● System implements design
● “Did we build the product

right?”
● “It's just what I asked for,

but not what I want”

Validation

● System actually works in
wanted / intended way

● “Did we build the right
product?”

● How to validate early?
– work products
– prototypes

Test is not validation

● You can't validate a system
by testing it
– System test cases are

generated from requirements
– Valid system = verification +

valid requirements
● User-generated tests help

capture requirements

Efficient, thorough testing

● Big issue: how to find small
test set with big leverage
– Use inspection to eliminate

uninteresting pieces
– Use formal methods to “prove”

big domains correct
– Test what's left as best you can

Inspecting for test

● Most code is boring; just
moves data around

● Unit test works well on
boring code

● Code without many defects
doesn't need much test

● Simple requirements don't
need much test

Subdomain proofs

● Example (Massey / Haertel)
– Print / round FP numbers =

base conversion problem
– Most numbers round right

way automatically
– Prove that rounding is right

on all but special inputs
– Test and special-case those

More about coverage

● How do we estimate /
measure that a set of test
cases is “good”?
– Domain coverage
– Code coverage
– Fault seeding / mutation

Branch coverage

● Branches taken each way

● Exercises conditionals
● Subsumes statement

coverage (cf dead code)

if (true) {
 x = 3;
}

Path coverage

● All paths covered (4 here)

● Exercises data paths

x2 = x1;
if (c1) {
 x2++;
}

x1 = 2;
if (c1) {
 x1 = 3;
}

Bayes' Rule

● It's worse than you think

● Even if you find a bug,
finding a fix is hard

Pr H |E =
Pr E |H⋅Pr H

Pr E 

Risk

● Risk equation

● Risk management =
minimizing R through
decreasing Pr(f) for
various f

R=〈V F 〉=∑f ∈F
Pr f ⋅V f 

Various things that don't
work in practice

● Testing only (must have
recovery plan)

● Random testing only (must
do other testing)

● 100% test coverage
● Multiple independent

implementations

Has SW quality improved?

● Heck yes. Over the last 25
years we have learned to
– routinely build programs >

largest 1980 programs
– ship programs to naïve end

users in unrepairable
systems

– routinely build mission /
safety critical systems

What are current woes?

● Inappropriate tech for
application (esp language)

● Insufficient application of
– formal methods
– inspection
– root cause analysis

● Emphasis on fast vs good

System V&V

PSU CS 300 Lecture 8-1

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>

Check it

● System V&V builds on
– requirements, design
– unit test
– inspection

● AKA “QA”, “Testing”
● Alternative: “User Testing”

Verification

● System operates according
to requirements

● System implements design
● “Did we build the product

right?”
● “It's just what I asked for,

but not what I want”

Validation

● System actually works in
wanted / intended way

● “Did we build the right
product?”

● How to validate early?
– work products
– prototypes

Test is not validation

● You can't validate a system
by testing it
– System test cases are

generated from requirements
– Valid system = verification +

valid requirements
● User-generated tests help

capture requirements

Efficient, thorough testing

● Big issue: how to find small
test set with big leverage
– Use inspection to eliminate

uninteresting pieces
– Use formal methods to “prove”

big domains correct
– Test what's left as best you can

Inspecting for test

● Most code is boring; just
moves data around

● Unit test works well on
boring code

● Code without many defects
doesn't need much test

● Simple requirements don't
need much test

Subdomain proofs

● Example (Massey / Haertel)
– Print / round FP numbers =

base conversion problem
– Most numbers round right

way automatically
– Prove that rounding is right

on all but special inputs
– Test and special-case those

More about coverage

● How do we estimate /
measure that a set of test
cases is “good”?
– Domain coverage
– Code coverage
– Fault seeding / mutation

Branch coverage

● Branches taken each way

● Exercises conditionals
● Subsumes statement

coverage (cf dead code)

if (true) {
 x = 3;
}

Path coverage

● All paths covered (4 here)

● Exercises data paths

x2 = x1;
if (c1) {
 x2++;
}

x1 = 2;
if (c1) {
 x1 = 3;
}

Bayes' Rule

● It's worse than you think

● Even if you find a bug,
finding a fix is hard

Pr H |E =
Pr E |H⋅Pr H

Pr E 

Risk

● Risk equation

● Risk management =
minimizing R through
decreasing Pr(f) for
various f

R=〈V F 〉=∑f ∈F
Pr f ⋅V f 

Various things that don't
work in practice

● Testing only (must have
recovery plan)

● Random testing only (must
do other testing)

● 100% test coverage
● Multiple independent

implementations

Has SW quality improved?

● Heck yes. Over the last 25
years we have learned to
– routinely build programs >

largest 1980 programs
– ship programs to naïve end

users in unrepairable
systems

– routinely build mission /
safety critical systems

What are current woes?

● Inappropriate tech for
application (esp language)

● Insufficient application of
– formal methods
– inspection
– root cause analysis

● Emphasis on fast vs good

