System V&V

PSU CS 300 Lecture 8-1

Bart Massey
Assoc Prof Computer Science
Portland State University
<bart@cs.pdx.edu>

Check it

« System V&YV builds on
- requirements, design

- Inspection
« AKA “QA”, “Testing”
 Alternative: “User Testing”

Verification

« System operates according
to requirements

« System implements design

 “Did we build the product
right?”

»

Validation

« System actually

» “Did we build the right
product?”

« How to validate early?

- work products
- prototypes

Test iIs not validation

 You can't validate a system
by testing it

- System test cases are
generated from requirements

 User-generated tests help
capture requirements

Efficient, thorough testing

* Big issue: how to find

- Use inspection to eliminate
uninteresting pieces

- Use formal methods to “prove”
big domains correct

- Test what's left as best you can

Inspecting for test

« Most code iIs boring; just
moves data around

« Code without many defects
doesn't need much test

 Simple requirements don't
need much test

Subdomain proofs

« Example (Massey / Haertel)

- Print / round FP numbers =
base conversion problem

- Prove that rounding is right
on all but special inputs

- Test and special-case those

More about coverage

« How do we estimate /
measure that a set of test
cases is “good”?

- Domain coverage

- Fault seeding / mutation

Branch coverage

 Branches taken each way

1T (true) {
X = 3;

}

« Subsumes statement
coverage (cf dead code)

Path coverage

« All paths covered (4 here)

A

2 = X1;
(1T (cl) {

/j// X2++;

= 2;
(1)
x] =

Bayes' Rule

 It's worse than you think

E|H)-Pr(H)

Pr(H|E)=""t PriE

 Even if you find a bug,

Risk

Risk equation

R=(V(F))=2_._ Pr(f)-V(f)

minimizing R through
decreasing Pr(f) for
various f

Various things that don't
work in practice

 Testing only (must have
recovery plan)

« Random testing only (must
do other testing)

 Multiple independent
implementations

Has SW quality improved?

* Heck yes. Over the last 25
years we have learned to

- routinely build programs >
largest 1980 programs

- routinely build mission /
safety critical systems

What are current woes?

 Inappropriate tech for
application (esp language)

 Insufficient application of

- formal methods
- Inspection

« Emphasis on fast vs good

System V&V

PSU CS 300 Lecture 8-1

Bart Massey
Assoc Prof Computer Science
Portland State University
<bart@cs.pdx.edu>

Check it

« System V&V builds on
- requirements, design

- inspection
« AKA “QA”, “Testing”
» Alternative: “User Testing”

Verification

» System operates according
to requirements

« System implements design
* “Did we build the product

right?”

o

Validation

« System actually

* “Did we build the right
product?”

« How to validate early?

- work products
- prototypes

Test is not validation

* You can't validate a system
by testing it

- System test cases are
generated from requirements

 User-generated tests help
capture requirements

Efficient, thorough testing

* Big issue: how to find

- Use inspection to eliminate
uninteresting pieces

- Use formal methods to “prove”
big domains correct

- Test what's left as best you can

Inspecting for test

 Most code is boring; just
moves data around

« Code without many defects
doesn't need much test

 Simple requirements don't
need much test

Subdomain proofs

« Example (Massey / Haertel)

- Print / round FP numbers =
base conversion problem

- Prove that rounding is right
on all but special inputs

- Test and special-case those

More about coverage

« How do we estimate /
measure that a set of test
cases is “good”?

- Domain coverage

- Fault seeding / mutation

Branch coverage

 Branches taken each way

if (true) {
X = 3;

}

« Subsumes statement
coverage (cf dead code)

Path coverage

» All paths covered (4 here)

X1l = 2; ﬁ:xl;
if (cl) { if (cl) {

x1l = 3; X2++;

} }

.

Bayes' Rule

* It's worse than you think

Pr(E|H)-Pr(H)

Pr(H|E)= Pr(E)

* Even if you find a bug,

Risk

* Risk equation

R=(V(F))=>.,_ Pr(f)-V(f)

minimizing R through
decreasing Pr(f) for
various f

Various things that don't
work in practice

* Testing only (must have
recovery plan)

« Random testing only (must
do other testing)

» Multiple independent
implementations

Has SW quality improved?

« Heck yes. Over the last 25
years we have learned to

- routinely build programs >
largest 1980 programs

- routinely build mission /
safety critical systems

What are current woes?

* Inappropriate tech for
application (esp language)

» Insufficient application of

- formal methods
- inspection

« Emphasis on fast vs good

