
Inspection

PSU CS 300 Lecture 8-2

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>



Reviews

● Managerial, Technical
● Requirements, Design, Code, 

Tests, Changes...
● Formal Inspection, Code 

Reading, ``Structured 
Walkthrough'', Informal 
Walkthrough, Desk Checking, 
etc...



Code Reviews

● Perhaps least important phase to 
review (esp. if detailed design 
reviewed)

● Important to consider human 
capacities:
– Input reasonably defect-free
– Concentration on common mistakes
– Concentration on semantic mistakes
– Reasonable pace, expectations



Formal Technical 
Inspection of Code

● Methodology due to Fagan (IBM)
● Emphasis on detection, 

measurement
● Good information about 

helpfulness
● Slow to move into smaller SW 

projects



Code Inspection Roles

● Author: as passive as possible
– answers questions
– often reads, sometimes records

● Moderator: trained, sets pace, 
mediates

● Reader: reads code
● Recorder: records defects
● Reviewer: reviews the code



Code Inspection 
Preparation

● Assign code to reviewers
● Each reviewer

– reads code carefully
– completes any checklist(s)



Ideal Inspection Size

● Work
– 200-500 lines of code (= 1 module!)
– 1-3 hours
– space between sessions

● People
– 3-6
– best with 3-4



Code Inspection Process

● Moderator instructs reader to 
proceed

● Reader reads line of code
● Reviewers signal any potential 

questions, defects
● Recorder records defects
● ...continue



Code Inspection Pitfalls

● Personalities
● Moderator rate/workload wrong
● Defect correction rather than 

detection
● Checklist issues
● Groupthink, wrong level of detail...
● Bad recording or followup



Code Reading

● Inspection without the meeting...
● Various levels of formality
● Good way to get code review 

started
● Can be almost as effective as 

inspection



Review and Code Quality

● Much easier to review
– well-written code
– designed code

● Much more effective to review
low-defect code
– modular
– esp. ADT
– not pretuned



Inspection

PSU CS 300 Lecture 8-2

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>



Reviews

● Managerial, Technical
● Requirements, Design, Code, 

Tests, Changes...
● Formal Inspection, Code 

Reading, ``Structured 
Walkthrough'', Informal 
Walkthrough, Desk Checking, 
etc...

The goal of a technical review is to address specific, quantifiable, 
technical quality issues.
Most reports from review projects show fairly good results 
regardless of the actual type of review. This should encourage a 
sensible organization to do something rather than the current 
default...



Code Reviews

● Perhaps least important phase to 
review (esp. if detailed design 
reviewed)

● Important to consider human 
capacities:
– Input reasonably defect-free
– Concentration on common mistakes
– Concentration on semantic mistakes
– Reasonable pace, expectations

Reviewing is one of those activities that is a moderate mismatch 
with human strengths. Thus, one must be careful to focus the 
review on things humans can do, in manageably sized chunks.



Formal Technical 
Inspection of Code

● Methodology due to Fagan (IBM)
● Emphasis on detection, 

measurement
● Good information about 

helpfulness
● Slow to move into smaller SW 

projects

Neither traditional CS degrees nor smaller shops normally have 
any training in inspection, which perpetuates the lack of it in 
many modern environments.



Code Inspection Roles

● Author: as passive as possible
– answers questions
– often reads, sometimes records

● Moderator: trained, sets pace, 
mediates

● Reader: reads code
● Recorder: records defects
● Reviewer: reviews the code

The author should not
volunteer defect information
suggest corrections on line
accept praise or blame

The reviewers should not 
``attack''
suggest corrections on line
stray from the task at hand (e.g. design comments)

The recorder must note as much information as possible about 
each defect, and as little else as possible!



Code Inspection 
Preparation

● Assign code to reviewers
● Each reviewer

– reads code carefully
– completes any checklist(s)

Checklists should not be used as a substitute for a brain. Besides, 
if done correctly, they will be too short to even look like one.



Ideal Inspection Size

● Work
– 200-500 lines of code (= 1 module!)
– 1-3 hours
– space between sessions

● People
– 3-6
– best with 3-4

These numbers are of course approximate. The advice of your text 
is good on this: figure out what should work in advance, and stick 
to it! 



Code Inspection Process

● Moderator instructs reader to 
proceed

● Reader reads line of code
● Reviewers signal any potential 

questions, defects
● Recorder records defects
● ...continue

I hold with the view that anything that looks like a defect is: it 
may not be a functional defect, but it's at least a coding style or 
documentation defect.
Note that if this is done properly, there will be no place for egos to 
play. The process is deliberately rigged to be as impersonal as 
possible, to avoid this. The moderator must stop arguments, and 
really even limit discussion, as quickly as possible: there'll be 
plenty of time for that after the meeting.



Code Inspection Pitfalls

● Personalities
● Moderator rate/workload wrong
● Defect correction rather than 

detection
● Checklist issues
● Groupthink, wrong level of detail...
● Bad recording or followup

Checklists are great, but they should be short and useful. 
Whenever adding to one, drop something off as well.



Code Reading

● Inspection without the meeting...
● Various levels of formality
● Good way to get code review 

started
● Can be almost as effective as 

inspection

Note that this lecture focuses on code reading for review of 
putatively good code; there's also the art of reading legacy code in 
useful ways...
For an organization that has no code review at all, a good way to 
start is by mandating that no code will be shipped until it has been 
read formally by at least k of the staff (probably k=1 or 2) other 
than the author. This can be a tool for usefully introducing 
checklists as well.



Review and Code Quality

● Much easier to review
– well-written code
– designed code

● Much more effective to review
low-defect code
– modular
– esp. ADT
– not pretuned

Thus, all the other stuff we've talked about so far interacts with 
the review process. It is thus important to get it all right as much 
as possible.


