
Deployment

PSU CS 300 Lecture 10-2a

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>

Software-intensive
systems

● Real systems have
software and hardware and
people and...

● During development, not
such a big deal

● At deployment time, things
get interesting

Types of system

● White box app
● Commercially deployed app
● In-house app
● Infrastructure SW / tool /

library
● Embedded system
● ...

The deployment life-cycle

● Final QA
● Packaging
● Distribution
● Customer validation
● Customer acceptance

Final QA

● Regression test: kill all
regressions

● User test: have a typical user
run the program for a while

● High-level validation: can
anyone think of problems to
be solved before shipping?

Known product

● You should be able to
reproduce the build you are
about to package perfectly,
many years from now
– All code in single SCMS? In

archival tar/zipball?
– Formats? Tools?
– HW dependencies?

Traceability

● Can the fielded version be
matched with what you are
about to package?
– Have you preserved tagged

intermediate work products?
– Is the fielded product tagged

with sufficient identifying
information (versioning)?

Packaging

● What packaging options do
you have for what you are
doing?
– Easy case: it's in ROM
– Hard case: it's a network-

installable package for some
obscure platform

● Try to conform to pkg stds

Standard packages

● The user, platform, etc have
standard expectations for
software packaging: follow
them!
– MacOS, Win installers
– Linux packages
– etc

User documentation

● Will the user know how to
work this thing?
– We should have set up a

documentation plan during
requirements

– Validate docs now
● Will the user know how to

read the docs?

Delivery

● Giving a white box to a
distributor is easy

● Setting up network delivery
is harder
– security issues
– payment issues

● For other things, delivery
means more than this

Secure Deployment

● Viruses and trojans in
package?

● Possibility of outside
tampering w/ installation?

● The dreaded “laptop from
outside”

● The dreaded disgruntled

Delivery of infrastructure

● Often accompanied by a
human expert for installation

● May involve delivery of
training also

● Needs to be coordinated
with other on-site SW

● Choose an appropriate time

Product families

● Have to make sure that the
right software gets to the
right place
– clearly mark everything
– adaptable SW products are

better than SW product
families

Customer validation

● Maintenance costs start now
– Even in white-box world,

unhappy customers call up
– Enterprise customers will

make you get it right
● Glad you have clear, clean

validated requirements?

Dodging delivery-day
disasters

● Do what you can to
– make sure there are backups
– make sure that mission critical

systems are not disrupted
● Run infrastructure in parallel
● Remember, HW is cheap. You

are expensive. Customer's
business is priceless

Customer acceptance:
maintenance begins

● Following suggestions given
here can dramatically
decrease maintenance

● Still, not having customers
would be easier

● Open source has a somewhat
different model for all this

Open source: continuous
delivery

● In open source, delivery
starts as soon as there's code
– Source first
– Binaries second
– Packages last

● No penalty for small
incremental deliveries

Open source: customer
validation

● Open source is incrementally
customer validated, also

● Exception: “big industry
dump” packages
– These are not accepted quickly

● Techie open source users run
the process backward

Evolution of software
deployment

● 1970s: have a magtape with a
system product

● 1980s: have a floppy with an
end-user application

● 1990s-present: have a package
integrated into an “OS”

● 2000s: ???

Deployment

PSU CS 300 Lecture 10-2a

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>

Software-intensive
systems

● Real systems have
software and hardware and
people and...

● During development, not
such a big deal

● At deployment time, things
get interesting

Types of system

● White box app
● Commercially deployed app
● In-house app
● Infrastructure SW / tool /

library
● Embedded system
● ...

The deployment life-cycle

● Final QA
● Packaging
● Distribution
● Customer validation
● Customer acceptance

Final QA

● Regression test: kill all
regressions

● User test: have a typical user
run the program for a while

● High-level validation: can
anyone think of problems to
be solved before shipping?

Known product

● You should be able to
reproduce the build you are
about to package perfectly,
many years from now
– All code in single SCMS? In

archival tar/zipball?
– Formats? Tools?
– HW dependencies?

Traceability

● Can the fielded version be
matched with what you are
about to package?
– Have you preserved tagged

intermediate work products?
– Is the fielded product tagged

with sufficient identifying
information (versioning)?

Packaging

● What packaging options do
you have for what you are
doing?
– Easy case: it's in ROM
– Hard case: it's a network-

installable package for some
obscure platform

● Try to conform to pkg stds

Standard packages

● The user, platform, etc have
standard expectations for
software packaging: follow
them!
– MacOS, Win installers
– Linux packages
– etc

User documentation

● Will the user know how to
work this thing?
– We should have set up a

documentation plan during
requirements

– Validate docs now
● Will the user know how to

read the docs?

Delivery

● Giving a white box to a
distributor is easy

● Setting up network delivery
is harder
– security issues
– payment issues

● For other things, delivery
means more than this

Secure Deployment

● Viruses and trojans in
package?

● Possibility of outside
tampering w/ installation?

● The dreaded “laptop from
outside”

● The dreaded disgruntled

Delivery of infrastructure

● Often accompanied by a
human expert for installation

● May involve delivery of
training also

● Needs to be coordinated
with other on-site SW

● Choose an appropriate time

Product families

● Have to make sure that the
right software gets to the
right place
– clearly mark everything
– adaptable SW products are

better than SW product
families

Customer validation

● Maintenance costs start now
– Even in white-box world,

unhappy customers call up
– Enterprise customers will

make you get it right
● Glad you have clear, clean

validated requirements?

Dodging delivery-day
disasters

● Do what you can to
– make sure there are backups
– make sure that mission critical

systems are not disrupted
● Run infrastructure in parallel
● Remember, HW is cheap. You

are expensive. Customer's
business is priceless

Customer acceptance:
maintenance begins

● Following suggestions given
here can dramatically
decrease maintenance

● Still, not having customers
would be easier

● Open source has a somewhat
different model for all this

Open source: continuous
delivery

● In open source, delivery
starts as soon as there's code
– Source first
– Binaries second
– Packages last

● No penalty for small
incremental deliveries

Open source: customer
validation

● Open source is incrementally
customer validated, also

● Exception: “big industry
dump” packages
– These are not accepted quickly

● Techie open source users run
the process backward

Evolution of software
deployment

● 1970s: have a magtape with a
system product

● 1980s: have a floppy with an
end-user application

● 1990s-present: have a package
integrated into an “OS”

● 2000s: ???

