
Software Maintenance

PSU CS 300 Lecture 10-2b

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>

Message

● Maintainability is a crucial
component of quality

● Maintenance must
preserve quality

Software maintenance

● Maintenance effort
● Maintenance activities
● Construction for maintenance
● Managing maintenance

Maintenance effort

Perfect
50%

Adapt
25%

Prevent
4%

Correct
21%

Front-End
60%

V&V
20%

Implement
20%

Develop
40% Maintain

60%

Kinds of maintenance

● Corrective: post-failure defect repair
● Perfective: upgrade or improve function
● Adaptive: accommodate other changes
● Preventative: repair faults before error
● Re-engineering

Faulty software

● Software does not “break”:
software defects are caused by
human error
– during dev, maintenance

● High initial corrective
maintenance = poor quality
system

● Corrective maintenance should be
small portion of total
development

Corrective maintenance

● “Bug-fixing” after failure
– identify fault causing failure
– identify fault injection point
– correct problem at this point

● “Heisenbugs” happen anyhow
– regression test
– preventative maintenance

Software grows or dies

● No requests for improvement
= unused (probably useless)
system

● System growth can be
blessing or curse

Perfective maintenance

● “Just like” corrective
maintenance!
– identify feature injection point
– build in new functionality from

this point
● Important: you will do this a lot

– inject no new faults
– organize and simplify
– rework now rather than later

Disorder and complexity

● The “KISS” principle:
“Keep It Simple, Stupid”

● Some systems inherently
complex:
unavoidably complex designs

● Maintenance leads to different
complexity:
entropy = increasing disorder

● Disorder eventually kills software

Adaptive maintenance

● Adapt software to change
● After corrective or perfective

maintenance
– natural given correct level
– counters tendency to disorder

● After change in environment
– platform change, tool change

Preventive maintenance

● Prevent failures
– removing defects before failure
– anticipating and “vaccinating”

against faults
● Robustification
● Oft-neglected

Re-Engineering

● Eventually, software dies from
– disorder
– dramatic requirements change

● Goal: reuse legacy materials
in new systems
– automated tool assistance
– all work products:

requirements, designs, code,
tests

Construction for
maintenance (1)

● Planning for maintenance
– resources, costs
– facility

● Requirements
– prioritized optional

requirements
– complete set of system tests
– traceability to tests

Construction for
maintenance (2)

● Architectural Design
– modularity, low coupling,

information hiding
● Detailed Design

– solid set of unit tests
– modularity

● Implementation
– readable, modifiable code

Managing maintenance

● Configuration Management
● Maintenance CM
● Impact Analysis

Configuration
management

● Configuration: set of all
baseline work products
– must identify
– must protect

● Configuration Management
(CM) uses
– Change Control Board (CCB)
– software assistance

Internal and external CM

● Internal CM: during product dev
– control evolving work products
– project CCB includes: project,

marketing manager, project architect,
team leads

● External CM: after product release
– control released version of product
– product CCB includes: product,

marketing, maintenance manager,
project architect

Maintenance CM

● Two sources of change
– discovered defects
– requirements changes

● Handled using specified
workflow (process)
– via CCB

● Tracked using CM

Impact analysis

● Given: traceability info.
● Find: what must change
● Injects change at proper point
● Enables estimation of repair

costs and problems
– deliberate programming: e.g.,

search failed
● Must design to avoid or

handle

Principled maintenance pays

● Good maintenance practices:
– root cause analysis
– impact analysis
– controlled change

 may make the difference between
– successful software
– temporarily useful artifact

Software Maintenance

PSU CS 300 Lecture 10-2b

Bart Massey
Assoc Prof Computer Science

Portland State University
<bart@cs.pdx.edu>

Message

● Maintainability is a crucial
component of quality

● Maintenance must
preserve quality

An unmaintainable piece of software is a useless piece of software. There are
two ways for a piece of software to become unmaintainable: (1) have the
unmaintainability built in, or (2) have it added after the fact. Both are common.

Software maintenance

● Maintenance effort
● Maintenance activities
● Construction for maintenance
● Managing maintenance

Maintenance programming = programming under strong constraints. A "Project
BIFF" situation: improve the program without spending any effort or changing
anything.

Maintenance effort

Perfect
50%

Adapt
25%

Prevent
4%

Correct
21%

Front-End
60%

V&V
20%

Implement
20%

Develop
40% Maintain

60%

Note that development is only 40% of the effort, yet we only spend part of one
lecture on this course on maintenance. This is because less is known about
maintenance, because good development will produce projects which are easy
(but onerous) to maintain, and because “perfective maintenance” resembles
incremental development so strongly anyhow.

The maintenance numbers are “typical” numbers from the study in the Pfleeger
book, not “best-practice” numbers. It is hard to say what best-practice should be:
surely preventative maintenance should be larger, and ideally corrective
maintenance should be 0.

Kinds of maintenance

● Corrective: post-failure defect repair
● Perfective: upgrade or improve function
● Adaptive: accommodate other changes
● Preventative: repair faults before error
● Re-engineering

Re-engineering is not really a kind of maintenance, of course, but many of the
considerations are common.

Faulty software

● Software does not “break”:
software defects are caused by
human error
– during dev, maintenance

● High initial corrective
maintenance = poor quality
system

● Corrective maintenance should be
small portion of total
development

There is great danger that the design will creep horribly in response to major
early bug-fixing.

Corrective maintenance

● “Bug-fixing” after failure
– identify fault causing failure
– identify fault injection point
– correct problem at this point

● “Heisenbugs” happen anyhow
– regression test
– preventative maintenance

If you are trying to fix, e.g., a design bug, it should be fixed in the design, then
propagated downward.

“Heisenbug” = fault expressed by perturbing the system while trying to debug it.

We will talk about regression testing next week.

Software grows or dies

● No requests for improvement
= unused (probably useless)
system

● System growth can be
blessing or curse

A properly-grown system in a stable environment will eventually match that
environment beautifully. An improperly-grown one will be a mismatch and an
internal mess.

Perfective maintenance

● “Just like” corrective
maintenance!
– identify feature injection point
– build in new functionality from

this point
● Important: you will do this a lot

– inject no new faults
– organize and simplify
– rework now rather than later

This is where loose coupling, reasonable unit tests, and good higher-level work
products really pay off.

Disorder and complexity

● The “KISS” principle:
“Keep It Simple, Stupid”

● Some systems inherently
complex:
unavoidably complex designs

● Maintenance leads to different
complexity:
entropy = increasing disorder

● Disorder eventually kills software

Not, as I recently overheard, “Keep It Simple and Stupid.”

Complexity is almost always bad, but if a system must be complex, it should at
least be designed complex, so that one has a chance of understanding it.

Adaptive maintenance

● Adapt software to change
● After corrective or perfective

maintenance
– natural given correct level
– counters tendency to disorder

● After change in environment
– platform change, tool change

Robustness in design and implementation limits the need for adaptive
maintenance. However, you may want to still do preventive maintenance to
maintain this robustness.

Preventive maintenance

● Prevent failures
– removing defects before failure
– anticipating and “vaccinating”

against faults
● Robustification
● Oft-neglected

Management has a responsibility to allot appropriate time to this activity, and to
listen to engineers who express needs for it. An ounce of prevention is worth a
pound of cure in software maintenance too.

Re-Engineering

● Eventually, software dies from
– disorder
– dramatic requirements change

● Goal: reuse legacy materials
in new systems
– automated tool assistance
– all work products:

requirements, designs, code,
tests

It is often hard to say when a product should be discarded. Having automatic
ways to salvage work makes it more attractive to do these analyses.

Construction for
maintenance (1)

● Planning for maintenance
– resources, costs
– facility

● Requirements
– prioritized optional

requirements
– complete set of system tests
– traceability to tests

These are just some of the obvious things that can be done in this regard. Most of
them are good development practice anyhow.

Construction for
maintenance (2)

● Architectural Design
– modularity, low coupling,

information hiding
● Detailed Design

– solid set of unit tests
– modularity

● Implementation
– readable, modifiable code

Building architects and designers spend a lot of time thinking about
maintainability...

Managing maintenance

● Configuration Management
● Maintenance CM
● Impact Analysis

“Configuration” here means something different than “product version”. I try to
avoid the word “version” because it sometimes means “revision” and sometimes
“build”. All should be clearer in a moment.

Configuration
management

● Configuration: set of all
baseline work products
– must identify
– must protect

● Configuration Management
(CM) uses
– Change Control Board (CCB)
– software assistance

The CCB should be explicitly represented in the overall workflow model of a
software development project.

Internal and external CM

● Internal CM: during product dev
– control evolving work products
– project CCB includes: project,

marketing manager, project architect,
team leads

● External CM: after product release
– control released version of product
– product CCB includes: product,

marketing, maintenance manager,
project architect

These activities are more different than first thought might indicate. In
particular, the external CM includes “build” elements...

Maintenance CM

● Two sources of change
– discovered defects
– requirements changes

● Handled using specified
workflow (process)
– via CCB

● Tracked using CM

One can often distinguish good from bad organizations by looking at their
mechanism for dealing with ECPs: most organizations these days deal with SPRs
reasonably, but in my experience few extend the same discipline to changes.

Impact analysis

● Given: traceability info.
● Find: what must change
● Injects change at proper point
● Enables estimation of repair

costs and problems
– deliberate programming: e.g.,

search failed
● Must design to avoid or

handle

We have already discussed this some.

Principled maintenance pays

● Good maintenance practices:
– root cause analysis
– impact analysis
– controlled change

 may make the difference between
– successful software
– temporarily useful artifact

